Fillerbuster: Multi-View Scene Completion for Casual Captures

Ethan Weber'?
Michael Zollhofer!

'Meta Reality Labs

Incomplete Casual Capture

K

Norman Miiller!
Angjoo Kanazawa®  Christian Richardt!

Our Completed Capture with Generated Novel Views

Yash Kant'-3 Vasu Agrawal

2UC Berkeley >University of Toronto

Figure 1. Completing casual captures. Fillerbuster takes an incomplete casual capture which has many images (left) and conditions on
these to create many consistent novel views, shown on the right with arrows. The original images and the new ones enable novel-view
synthesis (right) that is much more complete compared to vanilla Gaussian Splatting trained on only the incomplete casual capture (left).

Abstract

We present Fillerbuster', a method that completes unknown
regions of a 3D scene by utilizing a novel large-scale multi-
view latent diffusion transformer. Casual captures are often
sparse and miss surrounding content behind objects or above
the scene. Existing methods are not suitable for handling
this challenge as they focus on making the known pixels look
good with sparse-view priors, or on creating the missing
sides of objects from just one or two photos. In reality, we
often have hundreds of input frames and want to complete
areas that are missing and unobserved from the input frames.
Additionally, the images often do not have known camera
parameters. Our solution is to train a generative model that
can consume a large context of input frames while generat-
ing unknown target views and recovering image poses when
desired. We show results where we complete partial captures
on two existing datasets. We also present an uncalibrated
scene completion task where our unified model predicts both
poses and creates new content. Our model is the first to pre-
dict many images and poses together for scene completion.

Project page at https: //ethanweber.me/fillerbuster/

1. Introduction

Photogrammetry has been around for decades [47] but only
recently has become mainstream with novel-view synthesis
techniques becoming high fidelity, such as NeRF [31] and
Gaussian Splatting [21]. Widely used apps like Polycam
[36] or Flythroughs [30] mean that everyday people can go
out and easily capture content. Many such captures are done
casually, which means the data is collected rather quickly and
may miss large portions of the scene where the camera never
looked. Sometimes, the capture is just a handful of sparse
photos, which makes obtaining camera poses challenging.
Reconstructing casually captured scenes is challenging
because there is missing content to complete and it is not
predictable where the missing content will be from capture
to capture. In contrast, the object-centric setting is much
simpler as one can assume a canonical coordinate frame and
sample missing views looking inward on a sphere. Instead,
we highlight the challenges of scenes and focus on this more
general setting, where the input camera poses can be incredi-
bly diverse. Our goal is to fill in the missing information to
enable an immersive view of the scene that feels complete,
and where the rendered content can go beyond what is seen
in training images, as illustrated in Figure 1. To address this
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problem setting, we propose Fillerbuster for recovering un-
known 3D information from casually captured content. This
content may be casual videos, where a user quickly scans
their phone through a scene, or this may be a sparse set of
photos with unknown poses, e.g. from a vacation. Given this
data capture as input, our unified model can jointly complete
the unobserved content and recover poses.

To improve casual captures, our key insight is to jointly
model the image and camera distribution of existing casual
captures by using a multi-view aware diffusion model. Our
approach is made possible by the large influx of captured
data being recorded and uploaded online.

We design our model to handle a large and variable num-
ber of input and output frames. This is in contrast to existing
generative novel-view-synthesis (NVS) methods that are
typically autoregressive, meaning the next generations are
conditioned on previous generations. More specifically, our
problem setting is very different from the common settings
of (1) generation from text only (no images) [18, 45, 58]
(2) from just one image [28, 42], or (3) from two images
with the goal of interpolating between them [19, 67]. We
present an overview of related work in Figure 2. Our model
can take in many images and camera poses, e.g. 50 images,
and the user can specify which content is known, which is
unknown, and which should be completed. The model can
also take in partially complete images, unlike the current
paradigm of assuming the input images are fully intact and
known [11, 28]. Concretely, we train a large-scale diffusion
transformer with a flow-matching loss for inpainting in la-
tent space [39], conditioned on known images and camera
poses (represented as raymaps) with the task of recovering
the missing content, as illustrated in Figure 3.

We demonstrate our problem setting and the usefulness
of our Fillerbuster model on multiple tasks. First, we show
our model can complete casual captures by hallucinating
large unknown regions. Second, we introduce the task of
“uncalibrated scene completion”, where the goal is to recover
both the image poses and completed novel views. Notably,
we perform both tasks with our unified model. Third, we
show the multi-view inpainting task on the NeRFiller dataset
[61], where we surpass prior work in quality and consistency.
Finally, we present an ablation of our modeling decisions
and show our model’s ability to gracefully handle different
numbers of input images.

2. Related work

Few-view reconstruction. Our problem setting is not few-
view, but we highlight the differences here. These methods
focus on deleting reconstruction artifacts [12, 40, 60], using
sparse-view losses [34], leveraging depth and normal priors
[53], or using generative models [20, 29, 62], to complete
sparse captures. In contrast, our goal is to complete more
realistic casual captures, with more input images, and to look
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Figure 2. Problem setting. We illustrate our problem setting with
respect to a non-exhaustive set of related work. Many works focus
on scene synthesis (left) where one generates data from text or
from a single image. Similarly many tackle novel-view synthesis
(bottom) to synthesize new views of the input image content. Fewer
works focus on scene completion where the task is to complete
missing content in captures (top right).

outside of the captured training images.

Multi-view generative models. Many single-view to single
new-view models exist where an input image is known and
a target image is unknown [28, 41, 44, 51]. A few methods
have increased the input context to multiple input images
but still generate just one output view [19, 62]. Even fewer
methods have increased both the number of inputs and the
number of outputs. CAT3D [11] uses 1 or 3 input images
and generates 7 or 5 images, but never goes beyond a total
sequence size of 8. It also remains closed-source, which
limits its impact. We emphasize the importance of large se-
quence sizes in order to fit the entire casual capture in the
context to make new content consistent with the observations.
Some video models have been fine-tuned for camera control
[16, 54, 59] or use geometry conditioning [27, 33, 50, 67],
but these models generate smooth temporal videos, so can
neither condition on the entire capture nor generate the many
well-distributed views typical for the 3D reconstruction set-
ting.

LRMs conditioned on cameras. Large reconstruction mod-
els (LRMs) that predict 3D have become popular to directly
predict Gaussians [63, 69]. Most methods assume camera
poses as input, which may come from traditional methods
like COLMAP [43] or newer data-driven methods [24, 57].
LRMs are excellent at predicting pixel-aligned geometry but
cannot inpaint unobserved areas of the scene. Furthermore,
they rely on camera poses, which may be unknown in ca-
sual captures. We present a unified model for both tasks,
such that when the camera is unknown, we can perform the
“uncalibrated scene completion” task of making a camera
fly-through of the scene from a set of sparse unposed photos.
We model our camera pose prediction inspired by other data-
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Figure 3. Model overview. Fillerbuster is trained on a large collection of multi-view images and poses (top and bottom of stacked images,
respectively), which makes it useful for completing casual captures at inference time. More specifically, we are interested in four primary uses
of the model: (1) conditioning on known images which have pose, (2) predicting new views where poses are provided, (3) predicting partial
images where some pixels are known, or (4) recovering the camera poses when its unknown. Our model is a latent DiT trained to jointly
model images and poses for any mixture of the input. In practice, our poses are 6-channel raymaps encoding ray origins and directions.

driven approaches [68], but use a raymap latent space, with
ray origins and directions instead of Pliicker coordinates.
3D inpainting. Current 3D inpainting methods such as SPIn-
NeRF [32] or NeRFiller [61] rely on using 2D inpainting
models within the NeRF 3D reconstruction framework to
complete scenes [46]. Most methods [3-5, 25] focus on the
SPIn-NeRF dataset, which is forward-facing and has much
less camera motion than a typical casual capture. NeRFiller
has more challenging camera movement, so we consider this
dataset for experiments. However, none of these methods are
conditioned on camera views when inpainting. This makes it
impossible for these methods to complete scenes with large
unknown content. This is because some of the generated
views will be completely unknown, and without having con-
text of the existing scene, it is unclear how to fill in the image.
In contrast, our approach is camera-pose conditioned.

3. Method

We first explain our model’s details for jointly modeling
image completion and poses (Section 3.1), and then explain
how to use Fillerbuster for casual scene completion with our
model being helpful for 3D reconstruction (Section 3.2).

3.1. Fillerbuster Model

We propose a latent diffusion transformer that denoises
multiple input images and calibrated camera poses with
masks indicating known and unknown regions. There are
N elements in a sequence with images I; € RH*XWx3,
raymaps R; € RH*Wx6 with origin and direction per pixel,
valid image masks M! € RH*W and valid ray masks
MB € REXW 'where 1 indicates known conditioning infor-
mation and O indicates unknown pixels. Our goal is to predict
all images and raymaps given only the known information,
ie,p(I,R| 1o M R®MR). We use “sequence” to refer
to multiple images and cameras from the same capture, and
“sequence size” for how many images are denoised together.

Model architecture. The architecture is designed for latent
inpainting [39], taking in any combination of known and
unknown images and raymaps, and predicting the missing
values. We use a DiT architecture [35] and train with the
flow matching objective [26]. We train separate VAEs for
images and poses encoded as raymaps, where €' denotes the
image encoder and £R denotes the raymap encoder. Both
encoders compress the spatial resolution by a factor of 8x
and output a d-dimensional representation. We set d = 16
for both encoders. Let 2! = £1(I;) and 2z} = ER(R;) denote
the compressed latent image and raymap, respectively. Let
D denote a downscaling operation that reduces the spatial
resolution by the same factor as the encoders. We add noise
to z; as Z;;, = (1 — t)z + te, then prepare the sequence as

sie =2, ®E'([; O M}) @ D(M]) @ |

R, @ EX(R; © MY) @ DIMD), M
where @ denotes concatenation of the noisy latents, known
image and ray latents, and the masks themselves. The noisy
sequence s; € RNV *HxWx(4d+2) jq patchified, and position-
ally embedded (described later), then passed through the
transformer model F to predict the denoised latent images
and raymaps as {z!, 2R} = F(s). Our VAEs have a convolu-
tional architecture [39] and train with KL [23], adversarial
[13], and L1 reconstruction losses. Our transformer architec-
ture is “DiT-L/2” [35] with a latent patch size of 2x2 and
24 layers of multi-head self-attention. Our model only has
650M parameters — small enough to fit on most GPUs and
fast enough to use with open-source 3D reconstruction tools.
Raymap coordinate convention. Raymaps comprise per-
pixel ray origins and world-space unit directions. At training
time, we randomly choose one camera from our sequence
to be at the origin and oriented upright. We also randomly
rotate and rescale the cameras for augmentation, and ensure
that origins are always within the cube [—1, 1]3.
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Figure 4. Model samples. Here we show generations from our model. For this setting, we provide pose input for all images. The top rows
indicates which pixels are known, with yellow indicating unknown regions. The middle rows show the inpainted images after passing the
entire sequence of size 16 (top rows) into the model for 24 denoising steps. The bottom rows show the ground truth, but note that this is not
necessarily the only correct solution if the newly generated pixels are unobserved according to the masks. Notice that in the top example, the
generations are self-consistent but different than the GT, which is entirely plausible.

Masking out regions. During training, we mask out informa-
tion from the images and/or the raymaps; the task is to predict
the denoised sequence from partial noise. We apply masking
at the pixel level before VAE encoding (Equation (1)) to
enable precise control over which pixels are known or un-
known. We use a mixed masking strategy: some images are
known, some are unknown, and some are partially unknown
with randomly rotated rectangles, as illustrated in Figure 4.
We dropout image and raymap masking with a 10% chance
to enable classifier-free guidance [17].

Token positional embeddings. We use two forms of posi-
tional embeddings to enable varying sequence lengths to be
generated at inference time. /) 2D layout embeddings encode
the layout of the image with fixed sinusoidal embeddings. 2)
Index embeddings are more unique for our setting, where we
add an unordered index descriptor to each token coming from
the same image. More specifically, the full sequence s is first
patchified and projected into patches p. It is then augmented
with positional embeddings as p’ = ¥p(p) + iax (p), Where
1yp is sinusoidal embeddings to encode the 2D layout of
each patch within the image itself [55], and 145 to encode
which index in the sequence the patch is from. During train-
ing, 114x(p) randomly samples a frequency for each image
and then adds that value to each patch of the same image.
During inference, the frequencies are chosen with uniform
spacing and applied in the same way so each image has a
unique identifier. This helps support generating longer se-
quences at inference time beyond the training lengths, which
we show in Section 4.4. Prior multi-view diffusion trans-
former models do not incorporate this, and we show that this
is useful for generating longer sequences.

Training and inference details. We train our model from
scratch on a collection of datasets including ScanNet++ [65]
and a corpus of Shutterstock data including 2D images and
3D asset renderings. We train our final model on 64 A100
GPUs for approximately a month. We first train at 256256
resolution for 1M iterations, and then fine-tune for 100K iter-
ations with resolutions varying from 64 x 64 to 1024 x 1024
with sequence lengths between 20 and 2, depending on how
many images fit in GPU memory for a given resolution. See
our appendix for additional details. For inference, we apply
classifier-free guidance (CFG) by dropping out both image
and raymap conditioning for an unconditional prediction.
We use spatially varying CFG weights of 7 for the unknown
regions and 1.1 for the known regions to avoid saturation
artifacts since the task of copying the conditioning is much
easier than predicting new information [2].

3.2. Multi-View Scene Completion

Here we explain how to use our model to complete scenes.
Variable sequence lengths. Our index embedding enables
changing the sequence length at inference time. We leverage
this property to generate many images at the same time
for inpainting incomplete scenes, since NeRF and Gaussian
splatting typically require many views to create a scene.
Multi-view inpainting for scene completion. We complete
scenes by generating novel views and adding them to our
existing dataset, then optimizing 3DGS [21]. We avoid the
need for an SDS-like optimization approach [14, 37] be-
cause our model can generate many consistent images with
a large sequence size. To complete scenes with large camera
movement, we add new views to the scene that look in all di-
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Figure 5. Completing casual captures. Here we demonstrate our ability to complete casual captures from the training splits of the
Nerfbusters dataset [60]. On the left, we show the input captures and some representative images. 3DGS (Splatfacto) cannot add missing
details so the capture remains incomplete. Our CAT3D baseline conditions on 3 images and generates 6 images at a time, so it cannot
produce consistent content. Fillerbuster conditions on 16-40 images to generate 24 novel views, and obtains the most consistent results.

rections. We first inpaint many (~25) “anchor” frames, and
then condition on these frames to generate more novel views,
as in CAT3D [11]. The key difference is that we can handle
much larger sequence sizes than CAT3D, which operates
on at most 3 images for conditioning. Furthermore, unlike
CAT3D, we can also complete scenes with partial masks.
To complete these scenes, we inpaint the images themselves
and update the dataset with the new pixels.

Normal regularization. We find that regularizing Gaus-
sian splat geometry towards the end of optimization can
help improve results. Specifically, we apply a total-variation
smoothness loss on rendered normals [10], and we also align
our depth-derived surface normals with rendered normals
(similar to Verbin et al. [56] but using Gaussians instead

of NeRF). This second 10ss is Lyjign = [|sg(N;) — Na|3 +
lsg(N;) — Na||3, where N, are rendered normals from 3D
Gaussians, oriented towards the camera, and /N4 are normals
derived from rendered depth maps. We apply our normal
regularizations after the initial geometry has taken form, at
approximately 10K steps. Please see the appendix for more
details.

4. Evaluation

We first show our casual scene capture completion results
on the Nerfbusters dataset, and then demonstrate the “uncal-
ibrated scene completion” task on data captured ourselves.
Next, we show results on the NeRFiller dataset, where we
surpass prior work in quality and consistency. Finally, we
evaluate our model design choices. Note that we choose to
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Figure 6. Novel-view sampling. We start with a casual capture (top
left) and condition on 16 of the images to generate 24 anchor views
simultaneously (top right). We then condition on the casual capture
and anchors to densify views (bottom). We repeat the dense stage
for multiple rounds to reach ~100 novel views in total.

use 3D Gaussian splatting [21] for our reconstruction experi-
ments rather than NeRF [31] because 3DGS is fast to train
and thus gaining popularity among casual capture users.

4.1. Completing Casually Captured Scenes

Setting. Here we show results for completing casually cap-
tured scenes. We choose the Nerfbusters dataset [60] for this
setting because it mimics the casual captures of an inexperi-
enced user. Our goal is to take these partial captures and to
complete them — either by completing geometry or adding
context to the capture. We compare the following methods:
(1) 3DGS (Splatfacto [49], which uses the gsplat library [64],
with no inpainting), (2) NeRFiller [61] (NeRFiller inpainting,
which we note is not suitable for this setting where the new
views do not have partial masks), (3) CAT3D-sequence-size
(ours with CAT3D-sized conditioning, where we condition
on 3 images and generate 6 images a time, further described
in the appendix), and (4) Fillerbuster (our complete method,
where we condition on 16 views and generate 24 images at
a time). We perform multiple rounds of inpainting to reach
~100 new views that are added to the scene. We show this
procedure in Figure 6, where we sample cameras on a cylin-
der looking at random directions. Unfortunately, CAT3D
[11] is not open-sourced, so we cannot compare with it di-
rectly.

Results. We show qualitative results in Figure 5. We find
that 3DGS cannot add any additional detail, leading to large
unknown regions when rendering novel views away from
the training images. Naively adapting NeRFiller to this chal-
lenging setting fails drastically because the inpainting is
not conditioned on pose and are therefore random, adding
random colors to the scene. CAT3D-sequence-size is more
consistent but introduces artifacts due to the limited context
size. Our proposed method Fillerbuster, with large sequence
sizes for conditioning and generation, of the most consis-
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Figure 7. Completing casual captures metrics. We report relative
rotation accuracy for nearby frames in a novel-view video. We
use off-the-shelf correspondences [48] to estimate camera rotation
and compare with the ground truth. Fillerbuster produces the most

consistent videos from a pose-estimation perspective.

tent. We design a new metric, to evaluate this task since we
do not have ground-truth when hallucinating novel scene
content. We are inspired by previous work that measures
reconstruction error [9] or distance to epipolar lines [33, 66].
Specifically, we render a novel-view camera trajectory and
estimate the poses between nearby frames. We use off-the-
shelf correspondences [48] and classical methods [15] to
obtain a relative rotation, which we compare with the ground
truth. We report relative rotation accuracy in Figure 7 and
find the qualitative results to be consistent with camera-pose
estimation accuracy.

4.2. Uncalibrated Scene Completion

Here we consider the task of scene completion, starting from
a collection of 16 unposed photos. We show that our unified
image-and-pose model supports such casual captures by
predicting camera poses and then generating a fly-through of
the scene, completing unknown content where it’s missing.
Setting. Given the set of images, we can denoise the raymaps
conditioned only on the images. We use joint denoising tiling
with a window size of 8 images and average 8 times per
denoising step. This is similar to MultiDiffusion [1] or NeR-
Filler’s joint denoising [61] (see appendix). Then, we solve
for the pinhole camera parameters that match backprojected
rays to the denoised rays, taking only 5 seconds to converge
for 16 images. Next, we condition on our predicted rays to
generate novel views to complete the scenes. We create a
camera path by fitting a 2D ellipse to our posed images and
point cameras inward. Here we use a sequence size of 48: 16
input images with generated poses, plus 32 generated images
with specified poses, but note that this decision is flexible.
Results. Our joint modeling of poses and images is con-
venient because we do not rely on external structure-from-
motion; instead, our unified model can handle both tasks
gracefully. We show qualitative results of our video poses in
Figure 8. Please see our project page for video results.

4.3. Completing Masked 3D Regions

Figure 9 shows results where we inpaint scenes from the
NeRFiller dataset and compare against the NeRFiller method
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Figure 8. Uncalibrated scene completion. We capture some scenes with an iPhone 14 Pro and run our framework. We start from 16
uncalibrated and unposed images (left), and we use our model to both predict camera pose (middle) and generate completed views (right).
‘We show our predicted cameras in red compared and unknown views we will sample in black. Our cameras are plausible and useful for

conditioning on to generate new views. We show just 4 views here and the full videos on the project page.
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Figure 9. NeRFiller dataset novel-views. We complete NeRFiller
scenes [61] with higher quality and control than their method.

[61]. For both NeRFiller and Fillerbuster, we inpaint 32
equally-spaced training images and then train 3D Gaussian
splatting with our normal regularization. Notably, unlike
in NeRFiller, we do not use depth supervision or iterative

Table 1. Completing masked 3D regions. On the NeRFiller dataset
[61], we report novel-view synthesis metrics where we compare
the rendered images with the inpainted images. In parentheses, we
report numbers without using our normal regularizations. No nor-
mal regularization lets the network cheat to explain inconsistencies,
leading to slightly improved but misleading metrics. Overall, we
find Fillerbuster is much more consistent than NeRFiller.

Method PSNR 1 SSIM + LPIPS |
NeRFiller 25.57(25.94) 0.89 (0.88) 0.182(0.194)
Fillerbuster ~ 29.60 (30.65) 0.92 (0.93)  0.096 (0.069)

dataset updates. We instead inpaint once at the start of train-
ing to directly assess multi-view inpainting quality, regard-
less of any SDS-style optimizations that encourage consis-
tency. We also report reconstruction metrics in Table 1 by
comparing our 32 inpainted images with the final renderings
from the same 32 viewpoints. Our method is more consistent
than NeRFiller, with and without our normal regularization.

4.4. Model Design Ablations

We evaluate our model choices with the Nerfstudio dataset
[49] because it consists of 10 well-captured static scenes
that look in all directions. In Table 2, we report novel-view
synthesis metrics for 256 X256 resolution images for vary-
ing sequence lengths. For each scene, we randomly sample
a sequence of size N image crops of this resolution. We
condition on N/4 full crops and N/4 partial crops, and gen-
erate all the missing information (see Figure 4 for examples).
We repeat this procedure 50 times for sequences of length
N €{8,16, 32}, and report averaged metrics. Each model
is trained from scratch for 100K iterations with sequences
of N =8 images. Inspired by Esser et al. [8], we also report



Table 2. Model design ablations. We evaluate our model on posed images from the Nerfstudio Dataset [49]. We show a Fillerbuster
prediction above the table, where we compare the generation vs. the ground truth for reconstruction metrics (PSNR/SSIM/LPIPS). For
hallucination metrics, we report the conditional validation loss (VAL) as done by Esser et al. [8]. Notably, we focus on image generation
rather than pose prediction but find that not predicting pose (“no-pose-pred”) leads to worse results. See Section 4.4 for detailed descriptions.

Method Tters 8-views 16-views 32-views

PSNR®+ SSIMT LPIPS| VAL] | PSNRT SSIMt LPIPS| VAL| | PSNRT SSIMT LPIPS| VAL
no-index-emb 100K 11.10 0.431 0.456 0.2394 | 14.06 0.450 0.400 0.2417 | 12.38 0.467 0.422 0.2438
fixed-index-emb 100K 10.46 0.353 0.520 02517 | 12.14 0.390 0.491 0.2546 | 12.52 0.416 0.448 0.2556
no-poses 100K 11.63 0413 0.426 0.2386 | 14.73 0.461 0.384 0.2411 13.39 0.476 0.389 0.2431
random-poses 100K 11.82 0.431 0.415 0.2384 | 16.18 0.487 0.333 0.2409 | 14.27 0.483 0.367 0.2430
Fillerbuster 100K 11.97 0.435 0.415 0.2383 | 15.81 0.481 0.329 0.2407 14.21 0.486 0.366 0.2426
Fillerbuster M 12.77 0.442 0.381 0.2365 17.20 0.485 0.281 0.2388 | 14.13 0.498 0.352 0.2396

Figure 10. Qualitative results for model ablations. We provide
pose for all images and perform completion in the unknown regions
(yellow). Without index embeddings, the model fails to reason
about which image the tokens are coming from, so the results
are patchy and blurry. Without training for pose prediction, the
generations are worse than training for pose prediction (Fillerbuster
(100K)). The last rows show our final model and GT for reference.

validation losses (“VAL”) on these samples for 20 equally-
spaced time steps. This metric captures generation quality
unlike the other metrics that evaluate reconstruction.

Table 2 compares the following ablations (see Figure 10
for visual examples): “no-index-emb” does not use index
embeddings and instead relies on the raymaps to understand
the token relationships. This makes the task harder and the
model performs worse. “fixed-index-emb” uses a fixed num-
ber of index embeddings, preventing it from generalizing
to more than 8 images. To go beyond 8 images, more index
embeddings are introduced, which this model variant cannot
handle. Notice the low PSNR of this setting for 16-views.
“no-poses” does not denoise raymaps, and interestingly, we

find that when it does not learn to predict camera pose, the
model performs worse at image generation, indicating that
image and pose predictions are complementary tasks. Finally,
“random-poses” randomizes the poses instead of forcing them
to be upright with one camera at the origin. Our final model
is trained for much longer and is shown at the bottom of
the table, obtaining the best “VAL” results. We note that
the metrics vary from 8-views to 32-views because more
conditioning and more unknowns are introduced, and recon-
struction metrics are imperfect for assessing the models.

5. Conclusion

Many 3D casual captures are missing content because the
camera does not look everywhere. To recover these miss-
ing details, we present Fillerbuster, a large-scale multi-view
diffusion model, to complete missing regions or recover cam-
era poses when they are not available. We show our model
is useful at completing casual captures, and we introduce
an “uncalibrated scene completion” task where we generate
novel missing content from unposed images from our own
mobile captures. We also outperform NeRFiller on its setting,
where partial views are known and there are masks to com-
plete. Lastly, we present important model design decisions
to enable large sequence conditioning and generation.

The area of scene completion is incredibly exciting and
there are many avenues to explore beyond what is presented
here. For example, choosing camera paths can be challenging
because cameras should not be sampled inside of objects or
behind walls. For the Nerfbusters dataset, we sample on a
cylinder (Figure 6), but this may not be suitable for more
catered settings, such as looking under a desk or behind
a corner. Consequently, a method that predicts where to
sample next could be valuable. We also note that our model’s
generations become worse when the generated cameras are
very far away from the conditioning views, e.g. when we step
back too far from the input views. Incorporating more diverse
training data, or specifically rendering distant viewpoints
in simulations, may be useful. We proposed an initial step
towards the challenging problem of casual capture scene
completion. We expect the results will further improve with
a larger model, bigger compute budget, and more diverse
training data.
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A. Appendix

Here we provide more information about our paper.
There is additional info at our project page, https: //
ethanweber.me/fillerbuster/.

B. More Results

Please see the website for interactive results where we show
more results in the Nerfbusters and Nerfiller datasets. We
also have a new experiment in a section called “Flexible
Conditioning and Generation” where we illustrate how
our model can adapt to different number of input frames. We
show results for this on the LERF dataset [22].

C. Training Recipe

Here we provide more training details about our model.

Some of the data we use are as follows:

* ScanNet++ [65]: ~500 captures. This dataset is a collec-
tion of indoor scenes. We use their high-quality DSLR
images data for training our model.

¢ Shutterstock3D: ~2M 3D assets from Shutterstock. For
the meshes, we render them from 24 views sampled on
a sphere using Blender and the Cycles physically-based
path tracer, similar to Objaverse [6, 7].

* Shutterstock2D: ~400M image-text pairs from Shutter-
stock. These images are aesthetically pleasing. We use
these images since they have text information and can help
learn the long-tail of information that may not be present
in our other datasets.

We combine these datasets with various other multi-view
data available to us. We train our model for multi-view image
and raymap denoising. We include single-view data in the
training mix because we are training the model from scratch
and wish to learn more concepts outside of of the more
specific multi-view data. 50% of the time, the model samples
multi-view data, and the other 50% of the time, the model
samples single-view data.

Multi-view data sampling. We implement our multi-view

dataloader by leveraging the Nerfstudio [49] framework. We

use custom Nerfstudio DataParsers for each dataset type and
train NeRFs on a subset of the captures with the Nerfacto

[49] method. After confirming that our image crops and rays

are sampled properly, we can confidently use the dataset for

training our multi-view diffusion model. Within each of these
multi-view datasets, we uniformly sample frames with one
of 5 strides: 1, 2, 4, 8, or completely random (i.e. no stride).

We sample random crops within each image, and with 10%

chance we center the crop. With 10% chance, we drop out

conditioning. 75% of the time, we train for image denoising,
and 25% of the time, we train for raymap denoising.

Single-view data sampling. Our single-view data from Shut-

terstock2D is treated as a single-sequence set with a text

prompt and unknown camera ray conditioning. In this case,
we mask out the raymaps as conditioning and we also mask
out the loss for the noise prediction, to not penalize the
predictions where we do not have ground truth. We use
cross-attention with text embeddings. In practice, we only
use the text to control coarse signals like like brightening the
generation by using the word “bright”.

Mixed-precision training. We train with bfloat16 to
reduce memory requirements and speed up training. To sta-
bilize training, we found it was important to perform Lay-
erNorm in float32, and to normalize keys and queries
before attention operations [8].

Hyperparameters. We use flow matching and logit normal
sampling [8]. Our learning rate is constant at 10~*. For multi-
view training at 2562 resolution, we use a batch size of 4
sequences, and a sequence size of 10 for each GPU. For
single-view training at 2562 resolution, we use a batch size
of 52 images, where in this case the sequence size is 1. We
train with 64 A100 GPUs across 8 nodes for 1M steps which
takes roughly a month. Finally, we train for an additional
100K steps with varying image resolution. To implement this,
we assign each GPU to a specific resolution with uniform
probability and tune the batch size and sequence size to fit
within the GPU memory. We use the sequence sizes {20,
20, 10, 5, 2} for resolutions {642, 1282, 2562, 5122, 10242},
respectively.

D. Method Details
D.1. Image and Raymap VAE

We train two separate VAEs from scratch for compressing
images and raymaps into latent representations. We use the
same convolutional architecture [39] for both VAEs, each
with 4 down blocks and 4 up blocks. For the image VAE, the
output channels for each down block are 128, 256, 512, and
512. We use 3 input channels and 16 dimensions for the latent
dimension. For the raymap VAE, we reduce the down block
channel dimensions by a factor of 4, leading to dimensions:
32, 64, 128, and 128. The raymap VAE takes as input 6
channels and has a latent dimension of 16. For the raymap
VAE, we remove group norm since we noticed it produced
spot artifacts in the corner, consistent with previous findings
[52], and we modified the padding in the network to use
“replicate” padding. The image VAE has 84M parameters
and the raymap VAE has 5M parameters. The image VAE
trains on all our data, while the raymap VAE trains on only
our multi-view data.

D.2. Model Architecture

We provide an overview figure for our model in the main
paper. In this document, we provide a more detailed figure
of our model in Figure A.2. Please see the figure and its
caption for more details. We also provide a model sample in
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Masked origins
Inpainted origins

GT origins

Masked directions
Inpainted directions
GT directions

Figure A.1. Recovering missing information from a multi-view sequence. Our model is flexible in that it can condition on any available
information and recover the missing regions. We mark the conditioning as “Masked images”, “Masked origins”, and “Masked directions”.
The yellow regions are where information is not known. Given these conditions, we can recover all the missing information in the “Inpainted”
rows. Notice that we are recovering fully unknown images, unknown poses, partial images, and we are generating two fully new images and
poses at the same time (far right). The ground truth “GT” rows are provided as reference from the original capture, but the model only needs
to follow the GT when the input provides the appropriate information. Our model does not require a “GT” reference and instead the model
can be used to complete casually captured scenes where there is no reference, as shown in our paper. The origins and directions are all within
the cube [—1, 1]* so can be visualized in RGB space.

1

bk

Figure A.1 showing a combination of known images, miss- D.4. Inference Speed
ing images, missing poses, partial images, and where both

. A .. We provide inference speeds in Table A.1. We report this
images and poses are unknown, resulting in unconditional

on a NVIDIA A100. Here we sample for 50 steps, but in

generations. practice one could sample for 24 steps and achieve similar
quality results, while halving the inference time. Our model
is on the order of seconds to generate a handful of multi-
view images, which makes it useful to use with open-sourced
D.3. Raymap Prediction Discussion reconstruction frameworks [49].

Table A.1. Inference time of our model. Measured for 50 denois-

We solve for camera poses with a MultiDiffusion-style ap- : ] N A h
ing steps, including time for VAE encoding and decoding.

proach [33, 61], where we use a smaller sequence size as
input to the model and average predictions in order to predict
a larger context size. We found this approach to give higher
quality results for raymap recovery compared to passing 256x256 9 sec 9 sec 12 sec 23 sec
in all images together in the same forward-pass. However, 512512 12 sec 23 sec 53 sec 2 min
this finding is not true for generating image content. For
the image prediction task, it’s actually better to pass in all E. Evaluation Details
Lmages in the. same forward—pass.. We.suspe.ct this finding is E.1. CAT3D-Sequence-Size Baseline

ecause relative camera pose estimation will be unaffected
by cameras that do not look in the same areas, but image For this baseline, we choose 3 images from a casual capture
generation will still be influenced by all context in the scene. and use them for conditioning. Then, we generate 20 rounds

Resolution 4 Images 8 Images 16 Images 32 Images




of inpaints, generating 6 new views each time to reach a total
of 120 new generations, the same number that we generate
with our method that uses larger sequence sizes. The 6 target
views are sampled at a random elevation and height on a
cylinder. In practice, CAT3D [11] uses 5 new views, but we
use 6 to ease comparison in our implementation.

E.2. Relative Rotation Accuracy Metric

We use LoFTR [48] (outdoor weights) and Kornia [38] to
recover the relative rotation between frames sampled within
1 second of each other (in our 10-second videos). We sample
20 pairs per capture and report the average Relative Rotation
Accuracy for our baselines.

E.3. Nerfbusters Dataset

We use the training splits of the Nerfbusters dataset [61].
Nerfbusters was captured with a training and evaluation
video, but we only consider the training video, since it mim-
ics the casual capture of an inexperienced photogrammetry
user.

E.4. NeRFiller Dataset

We obtain the NeRFiller dataset and camera paths from the
NeRFiller project [61]. We exclude the “backpack” capture
for our analysis because it failed to reconstruct with Splat-
facto [49, 64]. We suspect this is because the “backpack”
capture is a forward-facing scene originally from SPIn-NeRF
[32].

F. Normal Regularization

Our normal regularization 10ss Lajign = ||sg(N;) — Na|3 +
lsg(N;) — Ng||3 aligns 3D Gaussian normals with depth-
derived normals. Specifically, [V, are rendered normals from
3D Gaussians, oriented towards the camera, and Ny are nor-
mals derived from rendered depth maps by backprojecting
rendered depth and computing cross products for nearby
points. We found that applying this regularization at the
start of training can prevent the Gaussians from moving
around gracefully during the start of optimization, however,
if we start the regularization after 10K steps when the ini-
tial structure settles, we can significantly improve geometry.
Figure A.3 shows our results with and without normal reg-
ularization. Note that we also use a TV loss to help create
smoother surfaces rather than jagged ones, but it has little
effect on the geometry overall.

3DGS Normals

Depth Normals

With normal reg.

Without normal reg.

Figure A.3. Normal regularization. We find that aligning depth-
derived normals with 3D Gaussian Splatting normals helps improve
our reconstructions.
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Figure A.2. Fillerbuster model architecture. Here we show the full model architecture from input (top) to output (bottom). We use the same
notation as the main paper, where I denotes images, R denotes raymaps, and M denotes masks indicating where we know information or not.
We inject various conditioning time and text conditioning into the model, as shown on the sides of the transformer. Timestep conditioning is
necessary because our model is a diffusion transformer. Text, however, is optional. We include it to jointly train on our single-view image
collection, which has text annotations, whereas the multi-view sequences are always trained with an empty string as the text prompt. The
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“Ada LayerNorm Continuous” is normalization with scale and shift modulation from the continuous time conditioning.
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