
PosturePal: Real-Time Posture Classification with a
Laptop Webcam

Ethan Weber
MIT EECS

Cambridge, MA
ejweber@mit.edu

Moin Nadeem
MIT EECS

Cambridge, MA
mnadeem@mit.edu

Abstract—Bad posture is a problem that affects many people
which can lead to arthritis among many other health conditions.
We attempt to alleviate this issue with PosturePal, an application
that classifies user posture from the front-facing camera on
any laptop. By utilizing various computer vision and machine
learning techniques, we go from 2D RGB images of individuals
to binary classification of posture (good or bad). After classifying
posture, we can then notify the user when they are sitting with
bad posture in real-time. We present our work in this paper, and
we explain the future goals and implications of such a system.

Index Terms—Computer Vision, Posture, Classification, Hu-
man Keypoints, Machine Learning

I. INTRODUCTION

Most people–especially students–sit in front of their laptops
all day. Furthermore, it’s estimated that 80% of people will
experience back pain at some time during their lives [1]. Given
the recent success in computer vision algorithms, we believe
that we can address this issue with laptop webcams. Currently
people use their laptop webcams for FaceTime, Skype, etc.,
but few applications are using them for health benefits! For
this reason, we propose PosturePal: the project that monitors
your posture with your webcam and alerts you when sitting
improperly.

Inspired by OpenPose [2]–a convolutional neural network
that can detect keypoints of people from 2D images, Pos-
turePal uses various classification algorithms on the keypoints
to determine whether someone’s posture is good or bad. We
have created an extensive pipeline to perform this analysis and
classification, which we describe in this paper. At a high level,
we are trying to get PosturePal to go from an RGB image to
keypoints to classification. We show an example of what we
are performing classification on in Figure 1.

Fig. 1. We convert the RGB image to keypoints to perform classification on.
(This step is done with OpenPose.) Here we show what those points look like.
The points connected in green are those that we believe hold the most relevant
information. We performed experiments where we compared classifying just
these points vs. all the keypoints, and just these points had the best results.

II. RELATED WORK

To the best of our knowledge, there is minimal work in the
area of classifying posture from 2D images. We did, however,
find one product on the market called Posture Monitor [3],
which utilizes an Intel RealSense 3D camera to detect posture
based on depth data while sitting in front of a computer.
Furthermore, this product only works with the Windows OS.
PosturePal, on the other hand, will work for anyone with a
standard laptop (assuming it has a webcam).

Fig. 2. Here we show a figure from the OpenPose paper depicting its network
architecture. It works by predicting confidence maps for both keypoints and
the segments that connect the keypoints. A matching algorithm is then run to
produce the connected keypoint images (illustrated by the connected keypoints
in the bottom left image). The bottom right image shows which keypoints
are predicted by the network. In particular, there are 18 keypoints that are
predicted for; they are indexed according to the numbers shown here.

We are quite confident our work is novel, but we couldn’t
have done it without using work from previous research. In
particular, we rely heavily on OpenPose, a network that takes
RGB images and outputs 2D keypoints of humans. We show
a diagram from the OpenPose paper in Figure 2. OpenPose
outputs predicted joint locations for all humans in an image,

but we make the assumption that only one user will be
using their computer. Therefore, we only take the first human
returned from the network.

In additional to OpenPose, there have been other papers
that try to solve the human keypoint detection problem, such
as DensePose [4]. DensePose is a network that goes from an
RGB image of people to reconstructing the 3D surface of the
human bodies in the scene. In relation to our work, this would
be equivalent to an OpenPose network that predicts for many
more than 18 joint locations. However, we did not explore
DensePose due to limited time and the hope that 18 keypoints
is sufficient for classification (although only the top half of
keypoints are visible from a laptop webcam point of view
anyways).

III. PIPELINE AND DATA SETUP

In this section, we go over our pipeline and explain how we
convert images into a vector classification problem. We begin
with the software stack and explain the steps leading up to
classification algorithms.

A. Software Stack
In Figure 3, we show our software stack pipeline. We break

the software stack into 3 main components: server side (blue),
data management (green), and classification analysis (red).
The diagram doesn’t illustrate complexity of our code, but it
effectively conveys the high level components of our pipeline.
Now we explain the sections in more detail.

Fig. 3. This is a diagram depicting the software stack we created for this
project. Blue illustrates the server side, green is for data management, and
red is for classification analysis.

1) Server Side: We use a Python3 Flask [5] server that runs
locally on someone’s machine. We chose to use a local server
to reduce privacy concerns. Our application can be run entirely
offline on the user’s computer. There is a chance that we do
everything in the browser in the future, but for now we are
trying to minimize privacy concerns.

The Flask server utilizes the OpenCV Library [6] to handle
reading images from the webcam. We use websockets to
handle the communication between the server and the web
frontend. Websockets help speed up network transmission

times by removing HTTP headers, and therefore allow for
drawing webcam images in the browser in real-time. We trans-
mit the images using Base64 image encoding and decoding on
the server and client (browser) side respectively.

Furthermore, we currently have two main webpages in
our frontend code. The first is a site for real-time posture
classification. Two screenshots from this webpage are shown
in Figure 4. These images show a version of our application
where clicking the ”Run Inference” button will classify the
image based on the classification algorithm and parameters
we have set at the time.

The other very important webpage we have is for stream-
lining data collection. Figure 5 illustrates this process. A
user can sit in front of their computer with this page open,
click the ”Start Collection” button, and then replicate the
postures shown in the figure. Interactive highlighting and text
instructions show the user how to collect data correctly. Our
server will then take the images collected and save them to as
a timestamped sequence. All the image sequences are saved
to folders of the following structure:

• timestamp
– BACK (folder of images)
– FORWARD (folder of images)
– NORMAL (folder of images)

In our work, we consider both BACK and FORWARD
images to be bad posture and NORMAL images to be good
posture. Figure 5 shows what we mean by BACK, FORWARD,
and NORMAL posture. For most sequences that we selected,
we took 20 images of each posture type. Therefore, this
amounts to 60 images for a given collection trial, where 40
are bad and 20 are good postures.

Fig. 4. Here we show two screenshots from our real-time posture classification
page. This page allows us to run whichever posture classification algorithm
we are using at the time.

2) Data Management: After creating code that could col-
lect images and store them as organized sequences, we wrote
a data API. The data API’s purpose is to convert the RGB
images to vectors. The preprocessing involves many steps, so
we explain those here.

First of all, we utilize an implementation of OpenPose from
GitHub [7]. We use the same neural network weights as those
in the original OpenPose paper from CMU [2]. Using this

2

Fig. 5. This is the webpage that we use to collect data. We had 4 different
people follow the steps (BACK, FORWARD, NORMAL posture left to right)
outlined in the diagram. The images from each trial are saved as a timestamped
sequences in labeled folders.

code, we can run inference on an RGB image and get the
keypoints output in normalized coordinates (values ranging
from 0 to 1 instead of absolute pixel indices). After running
inference for an image, we have 18 keypoints to work with
according to the diagram in Figure 2. We then create a 36
dimensional vector by combining the x and y values for each
of the 18 keypoints into a single vector in the following way:

[x0, x1, ..., x16, x17, y0, y1, ..., y16, y17]

Note the x and y values for missing keypoints are 0. We
then postprocess these intermediate vectors by subtracting
all non-zero keypoints by the position of the keypoint that
corresponds to the chest. The chest keypoint has index 1, as
shown in Figure 2. This helps ensure that our vectors will work
regardless of any displacement of the user. Quite simply, we
make all points in the vector relative to the chest keypoint
location.

After taking the images and converting them to a vectors in
this way, we then create an organized dictionary data structure
for every sequence that allows one to quickly grab a list
of vectors for all posture types (BACK, FORWARD, and
NORMAL). Finally, we serialize the dictionary and save it
as a dictionary with the same timestamp as the sequence. We
do this by saving the sequences as pickle files in Python3.

With all the sequences processed to vectors and saved to
pickle files, we now can load vectors very quickly. Given
this, we wrote some functions that allow us to query for a
training and test set from all of the processed sequences. By
providing this layer of abstraction, we quickly reduced our
problem to vector classification. We now move onto processing
the keypoints, which is arguably the fun part!

3) Classification Analysis: With the Data Management
taken care of, we use iPython Notebooks to experiment with
data processing and visualizations. The data API allows us
to specify a portion of our data to be for training and a
portion for testing. We outline our findings in the Methods
and Experimental Results section.

IV. METHODS AND EXPERIMENTAL RESULTS

Here we explain the process we went through for classifying
keypoints as good and bad posture. Before we dive into
the details of what worked best, we first explain our initial
experiments to get some intuition for the problem.

A. Feasibility Test
We started our work with a feasibility test by running

PCA (principal component analysis) on the keypoints in our
collected data set. PCA works by finding the linear projection
that maps a vector into a lower dimension while maximizing
the variance along each of the new dimensions. Here we
project the 36-dimensional vectors to 2 dimensions.

We show results of running PCA for individual sequences in
each of the 7 small plots. The large plot is of the 7 sequences
(which has in total 4 different people). Upon inspection, it’s
clear that some of the small plots look better than others. For
instance, the bottom left plot appears to be very separable
(meaning the different types of postures are plotted far away
from each other). However, the bottom right plot is not very
separable. We believe this is due to ”keypoint dropout”, which
means that sometimes not all important keypoints are visible.
For example, sometimes a shoulder will not be detected in an
image. This introduces high variance, which we explain later
with our data augmentation experiments.

Looking at the large plot (with all sequences), we note
that the projection in 2 dimensions is not clearly separable.
However, we were quite confident that given the few good
examples of individual sequences we could still perform
effective classification. In particular, we had the intuition that
performing (potentially nonlinear) classification on the vectors
not projected to 2 dimensions would have good results. After
the feasibility test, we continued on with vector classification
work.

Fig. 6. Here we show results of running principal component analysis (PCA)
to project the 36 dimensional vectors into 2 dimensional vectors. The small
plots are of individual sequences, while the the large plot is on all the data
(4 people and the 7 individual sequences).

B. Data Extrapolation
Constrained by limited resources and realizing that our data

set was small, we wanted to experiment with generating more
data from our relatively small dataset. We did this by taking
our full dataset and estimating Gaussian distributions for each
of the keypoints in 2D space. Recall that to create a vector,

3

we go from an RGB image to keypoints (Figure 1). We can
then take all of these keypoints from the dataset, find their
mean and covariance, and then create plots like those shown
in Figure 7 for each of BACK, FORWARD, and NORMAL
posture positions. Each color illustrates the the 2D Gaussian
distribution of one of the joints.

Here we show some psuedocode for estimating the Gaussian
distributions for each of the keypoints.

import numpy as np

d i c t i o n a r y f o r t h e d i s t r i b u t i o n s
d i s t = {}

f o r p o s t u r e t y p e , v e c t o r s in d a t a s e t :
h o l d s means and c o v a r i a n c e s
means = []
covs = []
f o r i in range (1 8) :

p o i n t s = []
f o r vec in v e c t o r s :

t h i s g e t s t h e (x , y)
v a l u e a t k e y p o i n t i n d e x i
p o i n t = (vec [i] , vec [i + 1 8])
p o i n t s . append (p o i n t)

p o i n t s = np . a r r a y (p o i n t s)
mean = np . mean (p o i n t s)
cov = np . cov (p o i n t s . T)
means . append (mean)
covs . append (cov)

d i s t [p o s t u r e t y p e] [” means ”] =\
np . a r r a y (means)

d i s t [p o s t u r e t y p e] [” covs ”] =\
np . a r r a y (covs)

After obtaining all the distributions for each keypoint, and
for each type of posture (BACK, FORWARD, and NORMAL),
we can then sample from the distributions to get an arbitrary
number of vectors to perform classification on. By using this
method on the full dataset and generating a sufficient number
of vectors, we are effectively forcing the classifiers to be more
robust to noise. We evaluate the robustness of this technique
for some experiments in the Classifiers subsection.

In some of the plots, there are keypoint distributions with
large variances in the direction that intersect with the center
origin (0,0). This is due to the ”keypoint dropout” problem.
When there are keypoints not detected with OpenPose, they
take the value (0,0). This introduces high variance and a
lot of noise. After some experiments, we decided to ignore
all vectors with ”keypoint dropout” on the chest, nose, and
shoulder keypoints (the 4 points connected in green in Figure
[?]).

C. Classifiers

Once we had validated the initial idea, we decided to
evaluate our results on several different models.

Fig. 7. Here we show the plots of representing each keypoint by a Gaussian
distribution for BACK, FORWARD, and NORMAL postures (left to right).
Each color represents a keypoint.

Classifier Accuracy Precision Recall F1-score

Gradient Boosted Trees 0.91 0.92 0.90 0.91
Random Forest 0.86 0.87 0.86 0.86
Support Vector Machines 0.82 0.83 0.83 0.80
Logistic Regression 0.82 0.83 0.83 0.83
Gaussian Naive Bayes 0.66 0.78 0.66 0.54

TABLE I
ABILITY TO MODEL A BINARY CLASSIFICATION TASK ON AUGMENTED

DATA.After finishing building our dataset, we had 339 images
uniformly distributed across all three classes before any aug-
mentation had occurred. We frame our classification problem
as two different tasks: one problem formulation where we
group BACK and FORWARD postures as bad postures, and
a NORMAL posture as good. We also provide another for-
mulation as a multi-class classification task where we simply
attempt to classify each image into the appropriate category
for a basis of comparison.

We attempted to perform classification on these tasks with
the following five different classifiers:

1) Gradient Boosted Trees
2) Random Forest Classifiers
3) Support Vector Machines
4) Logistic Regression
5) Gaussian Naive Bayes
Our implementations of the classifiers came from sklearn,

using the default hyperparameters for each model. Lastly, we
also explore the performance of our classifiers with respect to
our data augmentation methods as a means of determining how
robust our data augmentation strategies may be. Furthermore,
we performed many experiments with the 36-dimensional
vectors but only report results for the 8-dimensional vectors
(the points connected in green in Figure 1) because they were
much better.

1) Binary Classification: Table I demonstrates our results
on augmented data without adding any hand-crafted features.
In order to ensure that our results were not overfitting on a
random test set, we used 10-fold cross validation.

It is clear to see that Gradient Boosted Trees performed the
best on our dataset, followed by a Random Forest Classifier.
In particular, we wanted to highlight two aspects of our binary
classification results that provided insights about our data.

First, a Naive Bayes approach performs quite poorly on
our dataset. We believe that this is due to the fact that
the independence assumption in Naive Bayes doesn’t hold:
each keypoint is not conditionally independent of another.
For example, given the fact that the bilateral symmetry in

4

[Front, Back, Normal] [Front, Normal] [Back, Normal] [Front, Back]
Classifier Accuracy Precision Recall F1 Accuracy F1 Accuracy F1 Accuracy F1

Gradient Boosted Tree 0.88 0.89 0.88 0.88 0.94 0.94 0.88 0.88 0.96 0.96
Random Forest 0.85 0.87 0.86 0.86 0.91 0.91 0.88 0.88 0.92 0.93
Support Vector Classifier 0.81 0.87 0.81 0.82 0.86 0.87 0.86 0.85 0.98 0.99
Logistic Regression 0.79 0.87 0.79 0.79 0.86 0.87 0.83 0.82 0.99 0.99
GaussianNB 0.75 0.80 0.75 0.75 0.81 0.80 0.82 0.82 0.96 0.96

TABLE II
TABLE II DEMONSTRATES THE RESULTS OF AN ABLATION STUDY ON THE INPUT DATA. IN PARTICULAR, THIS DEMONSTRATES THE LARGE DIFFERENCE

BETWEEN THE FRONT AND BACK CLASS, WHILE DIFFERENTIATING NORMAL FROM EITHER NEGATIVE CLASS IS SLIGHTLY MORE DIFFICULT.

Without Augmentation With Augmentation
Classifier Accuracy F1 Accuracy F1
Gradient Boosted Tree 0.88 0.88 0.82 0.82
Random Forest Classifier 0.87 0.87 0.80 0.81
Support Vector Classifier 0.81 0.82 0.72 0.72
Logistic Regression 0.79 0.79 0.72 0.73
Gaussian Naive Bayes 0.75 0.75 0.84 0.84

TABLE III
TABLE III DEMONSTRATES THE IMPACT OF OUR AUGMENTATION

STRATEGY UPON OUR CLASSIFIERS.

the human body, and the fact that the keypoints are centered
around the chest, it is clear to see that the left shoulder is
conditionally dependent upon the right shoulder. As a result,
we were able to rule out this class of models from future
consideration.

Second, we notice that using Logistic Regression or a
Support Vector Machine has produced equivalent classification
results. At first, we had a hard time understanding the reasons
as to why, since they both are quite different classification
methods. However, given the fact that we used a linear kernel
for the Support Vector Machine, the only difference in the two
methods is a hinge loss versus logistic loss, which are nearly
equivalent for small inputs.

2) Multiclass Classification: We extend our insights in the
previous section to a multiclass problem formulation, as well
as perform an ablation study on our classifier to understand
its strengths and weaknesses.

Our results show that there is very little difference between
a multiclass classification task on all three categories and a
binary classification task. Therefore, it should be best to treat
this as a binary classification task for any application of the
work.

However, these studies also indicate that classifying between
a FRONT and BACK posture, and a FRONT and NORMAL
posture have similar results, both of which perform better
than a BACK and NORMAL task. This implies that our
features between BACK and NORMAL may lack sufficient
distinguishing features, and we believe this is an area for future
work. One particular intuition is that the main difference is that
NORMAL and BACK postures only differ by depth rather than
a strong difference in keypoints, suggesting the need for depth
perception as a feature.

3) Data Augmentation: Since we have formulated a custom
data augmentation strategy, we also believe that we should
evaluate the effectiveness of this strategy on our classifiers. We
perform an ablation study on our data augmentation strategy
to evaluate its effectiveness.

We see that our data augmentation strategy actually hin-
ders performance of our model in all but one case. Since

Fig. 8. Figure 8 demonstrates the intuition that the cosine angles between
vectors may lead to improved performance
our augmentation strategy assumes that keypoints follow a
Gaussian distribution, it makes sense that Gaussian Naive
Bayes model would increase in performance once we add
noise that follows a Gaussian distribution. Intuitively, we
believe that our data augmentation strategy is reasonable, but
it is possible that the underlying distribution does not follow
a Gaussian distribution, or that we have parameterized our
Gaussian distribution incorrectly.

4) Handcrafted Features: Finally, we had an intuition that
a helpful feature to hand-engineer may be the cosine angle
between each pair of points. For example, the cosine angle
between one’s left shoulder and neck may be useful towards
inferring posture. Similarly, the cosine of the angle formed by
the vector from each shoulder to chest point may also provide
valuable information. To convince yourself of this, consider the
angles an individual’s shoulders make when sitting properly
(often 180-degrees), versus when leaning forward or back.

With Angles Without Angles
Classifier Accuracy F1 Accuracy F1
Gradient Boosted Trees 0.91 0.91 0.89 0.90
Random Forest 0.89 0.89 0.85 0.85
Support Vector Classifier 0.83 0.83 0.80 0.80
Logistic Regression 0.83 0.83 0.80 0.80
Gaussian Naive Bayes 0.66 0.54 0.66 0.54

TABLE IV
TABLE IV DEMONSTRATES THE IMPACT UPON OUR PERFORMANCE THAT

OUR HAND-CRAFTED FEATURES HAVE. WE CAN SEE THIS HELPS IMPROVE
PERFORMANCE IS ALL KEY AREAS.

Table IV demonstrates the impact in performance that this
handcrafted feature has. We can see that this leads to an
increase in performance across all key areas. This aligns with
our expectation that the cosine distance should be a helpful
metric for the model to learn, and leaves us to believe that
developing other hand-crafted features may be a useful starting
point for future work.

V. FUTURE WORK

In terms of future work, we have many plans to further
develop our work. In particular, we have some limitations that
we plan to address with more time. Furthermore, we plan to

5

polish the application to make it more user-friendly. We also
plan to try out some new techniques for posture detection (such
as using depth information), and we conclude that other health
issues could be addressed in similar ways by using laptop
webcams.

A. Addressing Limitations
Currently we have some limitations to our current approach

for posture classification. We explain those here and then
explain how we may improve our results. One major limi-
tation is ”keypoint dropout”, which we explained in the Data
Extrapolation section. Essentially, we should not be making
predictions on data that does not detect relevant keypoints.
For instance, if the laptop image only detects one shoulder,
we should not classify posture. Based on human intuition, we
would not be able to classify posture based on points with
a shoulder detection missing. This is why we ignore vectors
with ”keypoint dropout” in our experiments, but we wish to
address this issue better in the future.

1) Trying to Generalize for all People: Instead of using
a dataset of multiple people, it might be best to only have
a calibration stage for the user of interest. In particular, we
realize that not everyone may use their laptops in the same
way. Some sit closer to their laptop than others, some may sit
further way, etc. Our Data Extrapolation may be sufficient to
generate enough data from just one person after some initialize
calibration. This is something we will look into in the future.

B. Depth Estimation
The current posture monitoring product on the market

(which we are aware of) uses depth to make the classification
of good and bad posture. However, Posture Monitor makes
use of an actual depth camera. We believe we could replace
this need with a learned approach. In the field of self-driving
cars, there has been a lot of work on using deep learning
to transform a single RGB image to a depth map. We feed
a webcam image through a depth prediction network [8]
(trained on self-driving car data) in Figure 9. Clearly the results
aren’t the best because images of people in front of their
laptops were not seen during training, but we are confident
that retraining a similar network on our own data (that better
matches the expected distribution of images we will see in
front of a computer) will achieve very good results. This may
be a good way to go about the posture classification task.
Posture Monitor appears to be successful with the use of 3D
depth data because it greatly simplify the problem of posture
classification.

C. End-to-End Neural Network
Another approach to the posture classification problem

would be to use an end-to-end convolutional neural network.
Image classification with convolutional neural networks has
shown to be very successful in general, but to get good
results requires a lot of training data. For this reason, we did
not use this approach for our project. Maybe in the future
we will try an end-to-end neural network if we crowdsource
data collection or pay people on a system such as Amazon

Fig. 9. Here we show an example of going from an RGB image to a predicted
depth image. We are using a pretrained network [8] on the Cityscapes Dataset,
so the results here are not very good for these images.

Mechanical Turk [9] to get images to work with. Due to
resource and time constraints of this project, we went with
the more predictable route of keypoint classification based on
the work of OpenPose.

Fig. 10. An illustration depicting a possible end-to-end neural network.
”PostureNet” (as depicted here) would require a large amount of training
data, which is why we chose to the 2-dimensional keypoint approach based
on OpenPose work.

D. Conclusion
Given the success of this project, we are very excited about

the possibility of making PosturePal accessible to everyone.
We hope to help people address their posture problems in a
convenient manner. Furthermore, we are interested in applying
similar techniques to resolve other problems such as face
touching, distraction, etc. We look forward to releasing more
work in this unexplored area. We have released all code and
approved images to promote reproducibility of our work.

E. Contributions
Ethan worked on creating the software pipeline and inte-

grating OpenPose into the code. He did preliminary tests with
PCA and worked with Moin on the data loader, vector prepro-
cessing, classification, and the server / client infrastructure.

Moin Nadeem worked on preprocessing keypoints into
vectors, feature engineering, and classification algorithms. He
worked with Ethan on writing a real-time inference engine, the
Data Preprocessing / Loading API, and the server and client
infrastructure.

REFERENCES

[1] “Back pain facts and statistics.” https://www.acatoday.org/Patients/Health-
Wellness-Information/Back-Pain-Facts-and-Statistics.

[2] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person
2d pose estimation using part affinity fields,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul 2017.

[3] “Posture monitor.” https://posturemonitor.org/.
[4] I. K. R{iza Alp Güler, Natalia Neverova, “Densepose: Dense human pose

estimation in the wild,” arXiv, 2018.
[5] “Flask.” http://flask.pocoo.org/.
[6] “Opencv library.” https://opencv.org/.
[7] “tf-pose-estimation github repository.” https://github.com/ildoonet/tf-

pose-estimation.
[8] “monodepth github repository.” https://github.com/mrharicot/monodepth.
[9] “Amazon mechanical turk.” https://www.mturk.com/.

6

