AREALYTICS

Daniel Gonzalez, Avery Lamp, Ethan Weber, and Moin Nadeem

Our Team

Ethan Weber

Hardware, Microcontrollers, Software, Web
http://ejweber.scripts.mit.edu/

) -- -
p o4

Avery Lamp

Software, iOS Developer, Web
http://averylamp.me/PortfolioLinks.pdf

Daniel “"Gonzo"” Gonzalez

Design, Software, Hardware, Web
http://gonzo.mit.edu/resume.pdf

Moin Nadeem

Software, Systems, Web
http://moinnadeem.com/

http://moinnadeem.com/
http://gonzo.mit.edu/resume.pdf
http://averylamp.me/PortfolioLinks.pdf
http://ejweber.scripts.mit.edu/

For places that have a large flow of human traffic throughout the days and nights, such as
universities and convention centers, it's helpful for people running those institutions to have a good
idea of where people travel most and how they move in certain times of the days. There was no
efficient, simple way to accomplish this task until Arealytics came to life. Now we are able to
passively track people’s devices throughout various buildings and spaces. We can display this
information on a dashboard system tailored towards a customer’s needs: real-time data about
customers, max flow rates of walkways, location hotspots, and we are currently leveraging the
millions of data points available to create a predictive analytics solution.

How we accomplish this task is simple: we have reconfigured WiFi chips into a network of
microcontrollers that detect DNS Probe Requests. DNS probe requests are essentially signals that
WiFi devices broadcast out to the routers nearby with their MAC address saying, “Hey, I'm here!
Allow me to build a connection with you.” We store all of these probe requests by logging MAC
addresses, timestamps, signal strengths, and more. With this information, we can model the paths
that people took throughout the day. We will also provide vital information to businesses and
institutions about where to create new working spaces, where to perform construction, and where to
relocate sites to optimal locations.

System Infrastructure Diagram

This is a diagram depicting the major components of our system. We have a network of ESP8266
microcontrollers with power sources located within some geographical region. We call these
modules ESPs. These devices connect to WiFi access points nearby and continually send the data to
our server. The server then processes all of the data to create dynamic visualizations. The iOS

application acts a bridge between the ESPs and the server allowing us to easily deploy the ESPs in
locations and update the database with ease.

P

N

7

State Machine Diagram

Current keep_slive
info for all ESPs

domecrawl.us
website, 05 app
information

HTTP Requests &
webpage

Updated latlon

and nickname
for specified

SP in keep_alive

probe request data, HTTP R
database requests esponses
Current Time & updates

Linode Server

Batched probe request
data & keep_alive queried
GET reguests. information

SQL Requests
& Injections

DNS Probe
Requests

Noabkwbd -~

Automatically connect to WiFi.

Synchronize ESP8266 time with an NTP (Network Time Protocol) server.

Listen for all probe requests.

Send probe requests with time stamp in batches of 5 to the database.

Send "keep_alive” GET request every 30 seconds to signify the device is online.
Test connection and reconnect to WiFi if needed.

Repeat from step 2.

All of our server applications are written in Flask. Our backend is in MySQL.

1.

Website

1.1. Use Apache to listen for HTTP requests and serve the appropriate files.

1.2. Use client-side JS to continually ping the server, checking for new data.

Database

2.1. Obtain POST requests with new MAC addresses.

2.2. Validate the data types.

2.2.1. Ifvalid, insert the data, timestamp, and signal strength in a table of mac
addresses.

2.3. Return valid or invalid HTTP status codes.

iOS Endpoint

3.1. Listen for HTTP request and update “keep_alive” table according to the
microcontrollers being deployed.

Notifications

4.1. Twilio application in Flask that sends texts whenever there is a deployed device is
unreachable due to some unforeseen circumstance.

. Calls a GET request to get the list of ESPs in the “keep_alive” table and display the list in the

app.

Click on ESP of scan QR code of ESP box.

Waits for user to enter nickname and then the application automatically assigns GPS
coordinates based off of location readings from the phone.

Locations are updated effectively and accurately with an HTTP request including coordinates,
nickname, the MAC address, and time of movement

Deployment is one of the key concepts behind our project. The ability to deploy an additional ESP
quickly, cheaply, and effectively should be an integral part of the customer experience. Therefore, as
we considered how we should deploy devices, we had a few core concepts in mind.

1. Each deployment should require minimal configuration. The more the ESP could initialize on
it’s own, the better experience we could provide.

a. This means that the ESP should connect to WiFi automatically, as the user shouldn’t
have to consider this.

2. Each deployment should be modular. Information systems—particularly information
visualization systems—should be accommodative of them without additional effort on the part
of the user.

3. Uptime is key—if one node goes down, then our data becomes exponentially less valuable.
Therefore, we should be able to monitor uptime for devices and be alerted when one device
goes online or offline. The device should also reconnect to WiFi in the case of a lost
connection.

4. Quick and effective deployment is a necessity, so we decided to use create an iOS
companion app to speed up the process. We can simply snap a picture of the QR code on
each module and our database will be updated with the coordinates, time of last update, and
the nickname of the location. This is then used to automatically create graphs and maps for
our website.

1. Charge batteries or gather power supplies. Our system currently needs either charged
batteries or USB power supplies that plug into outlets.

2. Install the iOS companion app. The app is currently not on the app store, but we have plans
to further develop the app for both iOS and Android and make it publically available with our
product.

3. Place the modules in desired locations and snap a picture of the QR code. Set the GPS
coordinates with either your current location or by moving the map with your fingers. Type in
the nickname for each location, hit submit, and you are done.

4. Simply head to domecrawl.us to view your data and and our analysis of your location data.

http://domecrawl.us/

Portable Modules

Hardware

The hardware in our system consists of an ESP8266 WiFi module microcontroller (here)! and source
of power. We currently power our devices via a micro USB cable or a LiPo battery (here)’. The power
sources plug conveniently into our power breakout board (here)®, and the footprint of each unit is
designed to be very compact, modular, and portable. With parts provided by the 6.508 class, our
team soldered 8 protoboards meeting these goals.

This image depicts 3 of our 8 modules. Our
prototype boards have female headers so that we

6.508 [{] 6.508 |

final project || final project

can easily disconnect and reconnect the ESPs and
power boards. This proved very important because

we can program our ESPs on a separate
breadboard, move them to the protoboards, and
then deploy the modules with ease. By doing it this
way, we eliminated the need for extra hardware on
each protoboard.

We chose to use the ESP8266 WiFi module instead
of a Teensy microcontroller to save money, reduce

size, and enhance performance. The ESP is

cheaper, smaller, and more powerful than the Teensy. Furthermore, it can be used a soft access
point, meaning it can act as both a WiFi station (router) and as a client for our database. With these
capabilities, we have the ESP set to constantly receive probe requests and upload the data to the
our database every 5 entries.

After completing the 8 hardware units, we created a clean-looking box to enclose each unit for
deployment across MIT’s campus. We labelled the boxes in a way that ensured the project would be
safely distributed and not disrupted. Furthermore, we added a QR code to each box signifying the
MAC address of each ESP. These QR codes are used with the iOS companion app to quickly deploy
a network of modules with corresponding GPS coordinates.

! hitp://www.electrodragon.com/product/esp8266-smd-adapter-board/
2 https://www.adafruit.com/product/258
® https://www.adafruit.com/product/2465

https://www.adafruit.com/product/258
http://www.electrodragon.com/product/esp8266-smd-adapter-board/
https://www.adafruit.com/product/2465
https://www.adafruit.com/product/258
https://www.adafruit.com/product/2465
http://www.electrodragon.com/product/esp8266-smd-adapter-board/

The software on the ESPs works by collecting information about nearby devices (phones, laptops,
etc.) and sending it to our server. The data that we are sending to the database consists of the
epoch time (milliseconds since January 1, 1970), the unique MAC address of the ESP, the probe
request from a device searching for WiFi, and the signal strength of that device. The data is
conveniently packaged into a string on the ESP client side and sent via a POST request to the server.
Furthermore, we adjusted the server side to handle batch posting, meaning we can send multiple
database entries in the same string to reduce time spent sending the the server. We added this
feature in hopes to reduce power consumption, but we learned that most of the power was
consumed by acting as an access point regardless of the time spent on HTTP requests.

Some very important features of our ESP software include the following:
1. Automatic WiFi Connection

a.

When powered up, the ESP automatically searches for unencrypted WiFi networks
nearby. With the list of networks ordered in strength, the function iterates through
connecting to each network and pinging google.com. If there is a successful response
from Google, the ESP will remain connected to the network. If there isn’t a successful
response (meaning no internet connectivity), the ESP will repeat by testing the next
unencrypted network and so on.

2. SSID Includes MAC address
a. We have programmed the ESP to set its SSID to our team name including the last two

digits of the ESP’'s MAC address. This allows us to use our phones for quick debugging
and check to see whether the network is broadcasting a WiFi signal as an access point.
Furthermore, this permits us to ensure that our WiFi signals don't overlap, such that
devices don't report to be in multiple places simultaneously.

3. Sending a “keep alive” GET request every 30 seconds

a.

The ESP sends a GET request to our server every 30 seconds signifying that the ESP is
still online and functional. This is important because we use this information to keep up
to date on which ESPs and locations are operational. When the server notices that one
has gone offline, the dashboard on our website (domecrawl.us) will update and the
team members should receive text notifications.

4. HTTP Post Requests with MAC address Information

a.

The ESP is constantly sending a post request with “BATCH_NUMBER" of MAC
addresses per post. Furthermore, in the case where very low numbers of MAC

addresses are being collected, the post request will default to posting at a minimum
rate of POST_UPDATE_MINIMUM.

5. Automatic WiFi Reconnect

a.

IF the ESP goes without a successful response from the server for
SUCCESSFUL_RESPONSE_INTERVAL milliseconds, the ESP will automatically
reconnect to to WiFi.

http://domecrawl.us/index.html
https://www.google.com/

6. ESP Blinking LED
a. The ESP module will blink every time that it executes an HTTP request. This allows us
to quickly know if the device is working while debugging.
7. Synchronize Time
a. We use an NTP client library to sync the ESP clock with the real time. We then use the
epoch time in seconds associated with each MAC address when uploading the
database.

In the near future, we plan to implement a way to change all of the ESP parameters remotely. We
will also implement a way to remotely flash (over WiFi) the ESP with firmware. This will help make the
network of devices much more scalable because currently each device is programmed individually,
which wouldn’t be feasible for anything greater than 20 devices, for instance.

The following libraries have been very important to our software development on the hardware side:
1. ESP8266WiFi.h and ESP8266HTTPClient.h
a. These two libraries aid in setting up the ESPs as soft access points, connecting to the
internet and our server, finding nearby WiFi networks, collecting MAC addresses, and
displaying each ESP’s unique MAC address.
2. elapsedMillis.h
a. This library is vital to keeping our ESP process'’s timely. We have many timers and
intervals for each process so that we can conduct GET / POST HTTP requests at the
correct times preset by constants. Eventually these constants will be adjustable over
the year via our website.
3. NTPClient.h and WiFiUdp.h
a. These libraries are used to sync the ESP clock with the time in UTC. We are then using
this data to send the epoch time with each MAC address that is collected.

In order to stay portable, our team worked hard to test possible ways to conserve energy in our
system. One way that we tried to save energy was by using batch posting, meaning we send
multiple MAC addresses clustered in an extended string in an HTTP request. We accomplished this
task on both the client and server side so that we could send a group of collected MAC addresses
up to some predefined limit.

With this software in place, we ran a test run with our 8 devices. The results from our test are
summarized below. The MAC Address represents the ESP modules, the batch number is the number
of collected MAC addresses before sending the database, and the time alive is the time in hours
(rounded to the nearest hour) before the ESP died when starting with power from a fully charged
1200mAh 3.7 V battery.

MAC Addresses Batch Number Time Alive (hours)
A0:20:A6:00:EC:EO 5 8

A0:20:A6:0F:29:0F 5 7

A0:20:A6:04:62:4A 5 8

A0:20:A6:14:D9:28 5 8

A0:20:A6:01:56:52 10 0 (b/c of broken ESP)
A0:20:A6:0F:26:15 20 7

A0:20:A6:0F:2C:91 30 8

A0:20:A6:01:56:F4 50 8

From this data, we concluded that the HTTP requests didn’t take up much power compared to the
other processes onboard the ESP microcontroller. For example, because 50 batch posts is 10 times
fewer than 5 batch posts and yet the ESPs lived for roughly the same amount of time, it is safe to
conclude that broadcasting the ESP as an access point is taking up the majority of the power.
According to our calculations, the ESP appears to draw on average 150 mA (1200 mAH / 8 H). This is
a constant power consumption of 0.555 W (150 mA * 3.7 V).

After conducting two tests that lasted around 8 hours each, the team decided that it would be most
efficient to use a power outlet to collect data for a longer time interval. For our third and final test in
this class, we have deployed 8 devices that are plugged into micro USB wall plugs. We plan to leave
these running for a few weeks to collect a large dataset that we can use to perform data science and
data visualization on.

Although wall outlets work without limits, the team is actively working on finding ways to improve

power efficiency. We would like to have a system that has two options: use batteries and last a week
in any location or use outlets to last indefinitely.

10

Server Software
e Database

o Our database is using MySQL and is hosted locally on our team’s Linode server
instance. We currently have two main tables that we are using in our database:
"keep_alive” and "mac_addresses.” Our server is constantly listening for HTTP (both
GET and POST) requests and updating these tables accordingly. The server is
multithreaded to handle many requests at once.

o We are using a MySQL database on our Linode box, with the following tables:

m keep_alive
e This table stores all of our devices, the time deployed, the last time
communication occurred between our device and the server, the
nickname of the deployment location, and geographic coordinates of the
deployment location. Most of these are set through our iOS app!
m mac_addresses
e This table stores zll probe requests from devices. These entries for probe
requests include time captured, RSSI signal strength, and the associated
ESP the device was captured from.

o With 8 devices constantly running for 3 days, we receive on average 1,000,000 entries

of MAC addresses from MIT’s traffic on campus.
e Flask App
o Endpoints

m We have created many endpoints to hand all of our HTTP requests. We have
endpoints for the database to keep it updated. We have many endpoints
created for navigating our website, creating graphs behind the scenes, and
keeping the website up to date. We also created an endpoint for the iOS
companion app. This allows us to easily deploy our devices--giving them unique
names and locations for each module.

o Challenges
m Multithreading

e We found that multithreading our server was extremely important. When
we have 8 devices running with over 5 requests a second from each, we
must run processes in parallel. Originally we didn’t have this enabled in
Flask which caused our server to crash multiple times. However, our
problem was fixed as soon as fixing this problem.

m Closing MySQL connection

e Our team ran into some problems on the server when opening too many
MySQL connection in our Flask App. Our server would crash on occasion
because we were not terminating our opened connection. This was fixed
by closing a connection after each query that is made in Flask.

11

e Status Page
o The status page is a convenient way to display the number of devices online and
offline. It also keeps us updated with the number “unique MAC addresses” that have
been detected since our last deployment.
e Graphs Page
o On the http://domecrawl.us/graphs.html webpage we are utilizing Bokeh plots in
Python to generate graphs that display the number of probe requests at a specific
location over time. This page is created dynamically using Javascript. As soon as the
HTML page loads, the Javascript sends a GET request to a Flask endpoint to get the
list of devices online from our “keep_alive” table. This returned list is then parsed as a
JSON list and used to create a box for each Bokeh plot to be displayed. After this is
run on the initial page load, a user can select a time interval from the “Minute Interval”
dropdown. This is then used to send a GET request to another Python endpoint,
generate a Bokeh plot given the time interval (which counts the number of probe
requests in each interval), and then return the HTML and Javascript text for the
corresponding Bokeh plot. Finally, the Bokeh plot is inserted into the correct div tag
and is displayed on the screen. As our dataset becomes larger, the graph takes more
and more time to load. We will work on speeding up our graphing algorithms in the
future to reduce time delays and improve large data management.
e MAC Address Search Page
o This page is used to search for individual MAC addresses that have been saved in our
database. We create and display an image for the corresponding MAC address and log
the path of the device as it moved throughout the location of deployment--MIT in our
case. The image is created by making use of the libraries NetworkX and Matplotlib.

e Map Page
o Google provides a very nice map Javascript API. We are utilizing this API to add
clustering visualizations and graphical animations of foot-traffic.

e Intuitive Interface

o The iOS app was created in order to help speed up the process of deploying the
hardware to collect data. In our “keep_alive” table, each ESP has a row. The ESP has
a location, nickname, as well as other relevant information about where it was placed.
When probe requests hit that ESP, the keep_alive information for that ESP is copied
into relevant fields in the “mac_addresses” table where all of the probe requests are
stored with their locations and times. The iOS app makes it easy to update the
“keep_alive” table with the new GPS coordinates of where it was deployed as well as a
nickname for the device.

o The iOS app is very simple, but it gets the job done. It starts with a list of all of the
ESPs in the “keep_alive” table, displaying their MAC address and nickname. In order
to modify the data in the row for a ESP, you can either click on the row or use the QR

12

http://domecrawl.us/graphs.html

o

scanner button to scan the QR code conveniently placed on top of each of the ESPs.
After scanning, a page for editing the information for the ESP appears. It has a map
and a nickname field. In the map, the previous saved location of the ESP is marked
with a pin, and the new saved location is wherever a second pin on the map is dragged
to. The nickname field can be edited easily by clicking on it. After changes are made,
a user can click the save button, and the new information for the ESP is sent up to the
server to update the “keep_alive” table.
In summary all that is needed to deploy a module:

m Scan the QR Code

m Drag the map to the new location

m Type in the new ESP nickname (user friendly name for location)

m Click Save

e Server Connection

o

o

The server has a couple endpoints build in to make the iOS app function

The keep alive endpoint servers one function. To get the iOS
app the list of ESPs inside the “keep_alive” table, with the relevant information to each
ESP. To do this, it simply pulls the whole “keep_alive” table, packs it into a JSON with
a custom JSON encoder, then sends it to the iOS application. The iOS application
then displays the information in a table.

The set location is simple. It updates the location (latitude and
longitude) for a given MAC address inside the “keep_alive” table. It takes in the MAC
address with the latitude and longitude URL-Encoded and saves it inside the
"keep_alive” table with the corresponding MAC address.

The set nickname is also simple. It updates the nickname for
a given MAC address inside the “keep_alive” table. It takes in the MAC address with
the nickname URL-Encoded and saves it inside the “keep_alive” table with the
corresponding MAC address.

One of our first challenges was to figure out how to program the

ESPs. After doing a lot of research online, we found that people have created ways to
reprogram the ESPs using Arduino and reflashing the ESP. We had a lot of difficulty
comparing the ESP8266 to the tutorials online because the pins were named differently on
our ESP. After reading through a lot of tutorials and trying different wirings, we were able to
find a wiring that allowed us to flash the ESP. We had to do some experimentation with pin
numbers to reverse engineer which pins controlled the built-in LED and which pins crashed
the example code. Soon enough we were able to set the ESP up as an access point and
receive all probe requests to that access point.

One of the biggest challenges we had on the hardware side was

disconnecting from the internet and not sending received probe requests. When a specific

13

ESP goes offline, it is often very difficult to figure out why and it would also not reconnect. In
order to solve this problem, we wrote code for the modules that immediately detects when it
is not connected to internet. After it detects a problem with internet, the ESP scans for all
available wireless networks and sequentially tries to connect to an unsecured network. If the
connection is successful, the internet is tested, and if it fails, it tries the next unsecured
network. Using this strategy, even if a ESP loses connection to internet, it is able to reconnect
quickly and keep sending data to the server.

Another issue we had was with limited battery life. With the 1200 mAH lipo
batteries, the ESP lasted about 8 hours. Each ESP needs a current of about 150 mA because
the ESPs need to act as a wifi router as well as post probe requests when the batch number is
reached (5 probe requests sent at a time). Because we wanted long continuous sets of data,
we had only a couple options in order to make our ESPs last longer. We could play with the
batch size (discussed in energy section), we could get bigger batteries, or we could simply
plug them directly in walls. After trying the three options, we ended up deciding to plug the
ESPs directly in walls to get continuous sets of data.

A challenge that we had on the server side is that with numerous
ESPs doing post requests to the server at the same time. After we increased the number of
ESPs in our test set from 4 to 8, we noticed that the server gets backed up and sometimes
crashes due to the number of post requests. In order to fix this issue, we made the Flask App
that handles all post requests and inserts them into the SQL database multithreaded.
MAC Address Randomization: One issue we have that we spend significant efforts to try and
solve is the randomization of MAC addresses. In iOS 7, Apple introduced software that
randomizes the MAC address used to send probe requests every so often. Because of this,
people with iPhones that walk by ESPs may not be picked up in multiple locations, as their
MAC address could change in between those locations. In order to deal with this, we only
consider the probe requests to be valid if the same MAC address appears in more than one
location, signifying that the MAC address was probably not a randomized spoofed MAC
address. This added another level to our SQL queries which significantly slowed some of our
graphing.
Location Animations: With the current SQL database structure, it is very difficult to form a
query to create animations. Our original goal for animations was to be able to animate a
singular MAC address as it walks across campus between the different ESPs. In order to filter
MAC address and their probe requests, we had to create incredibly complicated queries,
sometimes filtering many tables. We ended up using queries that filter the database and
requery with tables up to four times in order to get good usable data. This ended up taking a
significant hit in our endpoint’s response time. For some endpoints, it requires over 10
seconds to fully query the data.
Scalability: An issue we are currently having with our project is scalability for the future. As of
now, we are storing about 1 million probe request rows stored in our database every 3 days.
With such a large database, our complex queries are getting slower and slower. The queries
needed to do animations on the database have started taking a long time, so we are looking
for a more optimal solution.

14

Our team is hoping to bring Arealytics outside of the classroom and into the retail space. We have
been developing our technology in class in such that it will be easily transferable to be built into a
real product. The market we are targeting is data analytics for things like malls and also events.

Currently there are no efficient methods of getting data on where people go when walking around
through events or buildings. However, this data can be extremely valuable to event hosts and
building owners. Event hosts could keep track of which areas are visited most frequently to improve
the efficiency of future events. For example, conferences could spend more time preparing the
events with greatest interest/attendance.

Furthermore, malls could place stores in more efficient locations depending on the trends of
customer movements (Consumers after visiting store A, are likely to visit store B and C. A, B, and C
should be located near each other). Malls can figure out which locations are more profitable, and
charge more for lease for those locations. Malls can do a health analysis on their current numbers of
customers and how that varies throughout the day.

Outside of retail space, there is also potential outside of the retail space and in the home space. Our
team competed in a hackathon at the MIT Media Lab to prototype this technology catering to the
elderly. We designed a system that could locate where someone is in their home. We would put our
MAC address tracker devices in each room of the house and then we could monitor the path of an
elderly person as they traversed through their home, for example. Using this data, is it possible to
tell when someone is spending too long in a given location. For example, if an elderly person was
spending an hour in the bathroom, our system could alert their children that something may be
wrong. This is just another application of our technology in case we would expand outside of the
retail space. A link to our project presentation is here.

In order to make our product market ready there is a lot that needs to be done. We hope to create
PCB designs for our ESPs and figure out how to produce them at a larger scale. We want them to
plug directly into an outlet as well as look nice and unsuspicious. We envision that the ESPs could
be as small as a 3 x 3 x 2 inch box that simply plugs into a wall outlet. We also do not want to lose
out on the event space, where outlets may be limited. In order to deal with this potential issue, we
would like to also build a version of the ESP that can be battery powered and distributed anywhere
on the fly.

We also plan to expand tremendously with the data analytics. Due to the scalability issues we

encountered while doing the 6.508 project (slowing over time), we hope to create an efficient way to
store and access data. We may switch our database over to a Mongo Database rather than SQL,

15

https://docs.google.com/presentation/d/1YXbTF6wYarl9qB_6Jmb9uB6z_SvkVV7yPAnWgBOIxkA/edit#slide=id.g1f39414ada_0_0

and do strategic insertion with only probe requests that matter (potentially reducing redundancies
20x). We also need to optimize our graphing algorithms and analytics algorithms so that we can
quickly crunch new statistics for our customers.

Furthermore, we would like to add a lot to the analytics side of the probe requests. In order to make
Arealytics market viable, we need to bring data that is useful for our customers to their fingertips. In
order to do this, we may need to talk to our potential customers and figure out what types of graphs
and things would be helpful to them.

16

