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Abstract—Inertially-actuated robots pose interesting problems
for underactuated control. Here we present trajectory opti-
mization and model predictive control (MPC) to control a 2d
cube with a torque-limited flywheel mounted inside. Inspired
by the Cubli [2] and M-Blocks [3], we use contact-implicit
trajectory optimization to generate trajectories for an inertia
cube. Optimization techniques applied are guided by earlier work
[1].

In this paper, we use one actuator (the flywheel) to control
the 8 states of the cube over time. Using Sparse Nonlinear
OPTimizer (SNOPT) in Drake (https://drake.mit.edu/), the cube
can be described as a floating body with contact-implicit dy-
namics via linear complementarity constraints [1]. This leads to
elegant optimal trajectory control for the cube. After successful
generation of trajectories, MPC was successfully used to control
about unstable fixed points. MPC worked better than expected
and solved very quickly at each timestep due to the convex
optimization formulation.

Index Terms—trajectory optimization, underactuated, inertia,
contact-implicit, model predictive control

I. INTRODUCTION

The cube is particularly interesting both due to its extreme
underactuation and its simplicity. After seeing the results of
M-Blocks [3], it’s clear that inertially-actuated cubes have
potential to be used in a variety of applications. The possibil-
ities of movements are immense, as seen in this video: https:
//www.youtube.com/watch?v=Nns0qzd8Noo. M-Blocks fore-
shadow the future of transformable robots. Furthermore, the
Cubli presents very nice control in stabilization to resist move-
ments (https://www.youtube.com/watch?v=n 6p-1J551Y). By
combining prior work with ideas from optimal control and
trajectory optimization, the cube has potential for much more
complex behavior. With elegant algorithms, we may be able
to help robots explore extraterrestrial space [6] or create
configurable robots like the nanobots in the movie Big Hero 6.
We are interested in applying our best underactuated control
algorithms to this system, and we present our results and future
goals in this paper.

II. DEFINING THE MODEL

In this section, we describe the cube in floating-body
coordinates with a few simplifying assumptions. The dynamics
work out nicely when described in this way. We can then

proceed to optimize over the state trajectory, input torque, and
external contact forces over time.

A. State Space Explanation

Fig. 1 is a diagram depicting the states of the cube. The
cube is defined in floating-base coordinates, meaning there is
no notion of the ground in the state description. Rather, there
are 8 contact forces (0-8), with 2 acting on each corner (A-D).

Fig. 1. The states of the floating cube. The derivatives of these states are also
included in the total state vector x but are not shown here for convenience.

Following from the cube diagram, the full states can be
described in the following way:

x =
[
x y θ α ẋ ẏ θ̇ α̇

]T
(1)

ẋ =
[
ẋ ẏ θ̇ α̇ ẍ ÿ θ̈ α̈

]T
(2)

The state vector x includes the positions, angles, and their
velocities. This is standard state space notation. Following
from Fig. 1, the dynamics are shown below. These dynamics
are informed by prior work done at Chalmers University of
Technology [4] but modified for the free-body coordinates
used here. We do not assume any pin joint dynamics (fixing
the corner in place) [4].
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ẍ = (f1 − f2 + f6 − f5) cos θ (3)
− (f0 + f3 − f4 − f7) sin θ (4)

ÿ = (f1 − f2 + f6 − f5) sin θ (5)
+ (f0 + f3 − f4 − f7) cos θ − g(mc +mw) (6)

θ̈ =
−u+ bwα̇− bcθ̇

Ic
+

1

2
(
∑

n∈1,3,5,7
fn −

∑
n∈0,2,4,6

fn) (7)

α̈ =
u(Ic + Iw) + bcIwθ̇ − bw Ic+Iw2 α̇

IwIc
(8)

Here we explain the notation used in the dynamics and some
simplifying assumptions.

• fn is the force acting on the corner based on Fig. 1.
• u is the torque on the flywheel.
• The cube is unit sized, meaning its dimensions are 1 for

each edge length.
• bw and bc are the friction coefficients for the wheel and

cube respectively.
• Iw and Ic are the moments of inertia for the wheel and

cube respectively.
• mw and mc are the masses for the wheel and cube

respectively.

In this paper, the following parameters were used in the
trajectory optimization and MPC solutions. We chose not to
spend much time on choosing parameters and instead focused
on the optimizations. The purpose of this project is to use
contact-implicit trajectory optimization and MPC, which is
described later in the paper. In the future we hope to prove
robustness of trajectories with parameter perturbations. Ideally
solved trajectories will work for cubes with a tolerance in
frictions, moment of inertia, and mass estimates.

• bw = bc = 0.5
• Iw = Ic = 0.5
• mw = mc = 0.5
• g = 9.81

III. TRAJECTORY OPTIMIZATION FORMULATION

In this section, we explain the linear complementarity con-
straint optimization formulation to solve for a cube trajectory
through space. The motions of the cube involve contact with
the ground, which is why we are choosing to use contact-
implicit trajectory optimization to avoid dealing with many
contact modes of the system [1]. Therefore, instead of mod-
eling the hybrid dynamics between every mode (and the
dynamics associated with all modes), we can define the cube
in floating-base coordinates and restrict contact forces to only
be active when touching the ground. We can also ensure that
the contact forces are within the friction cones. This is done
with the following optimization problem:

find
x[0:N ],u[0:N ],f [0:N ]

subject to x[n+ 1] = x[n] + f(x[n], u[n], f [n])dt,

n ∈ [0, N − 1],

− umax < u < umax,

0 ≤ f [n][i] ≤ fmax, i ∈ [0, 7],

f [n ∈ 0, 2, 4, 6] · φ[:] = 0.0,

f [n ∈ 1, 3, 5, 7] · φ[:] = 0.0,

− fz[n]µ ≤ fxy[n] ≤ fz[n]µ,
min time ≤ (N − 1)dt ≤ max time,
x[0] = xinitial,

x[N ] = xfinal,
(9)

Eq. (9) is shown without an objective function. Rather,
this formulation only needs to find a viable solution. This
formulation is only meant to represent the structure of the
optimization formulation used. We used different objective
functions (costs) depending on the problem at hand. Here is a
description of the values included in this optimization:
• f(x[n], u[n], f [n]) represents ẋ at time n.
• dt is the timestep duration, which is a decision variable.
• N is the number of knot points used.
• 0 ≤ f [n][i] ≤ fmax, i ∈ [0, 7] ensures that contact forces

only push away from the ground. The forces cannot pull
the cube down to the ground.

• φ[i] is the distance from the ith corner to the ground.
This is assuming that the ground is the only other object
in the world that can apply forces to the cube. Corners
(A-D) are indexed (0-4).

A. The Swing-Up Problem

The swing-up is the action of getting the cube to stand on
exactly one corner in a steady position when starting with
one face on the ground. By using contact-implicit trajectory
optimization, this is possible. We formulate the optimization
problem with direct transcription and a linear complementarity
constraint, shown in Eq. (9) as the dot product between the φ
and f vectors. There can either be distance or force, so both
cannot have non-zero values at the same time. The means force
can only be acting on corners in contact with the ground. We
found that this constraint is often too strict for the solver to
find a solution, so it’s important to add some slack to the
constraint.

1) Swing-Up Specific Formulation: It’s important to add
some slack to the problem formulation to achieve good results.
In particular, the linear complementarity constraint should be
adjusted to allow for some force when near the ground, not
just touching the ground. This results in better gradients for
SNOPT as the corners approach contact. There were also other
tweaks used to make this problem work. Here is a list of the
modifications used to achieve a good swing-up trajectory:
• Floor penetration. We allow for floor penetration up to

0.1 units into the ground.
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• Stay on ground. The center of mass cannot go higher
than its max height while still maintaining contact. From
empirical evidence, this helped to restrict the search space
and resulted in quicker solution convergence.

• Fix corner. We constrain corner A to be in contact with
the ground at all knot points.

• Dynamics error tolerance. We set a 0.01 tolerance on
dynamically error. This is because our model may not be
perfectly accurate.

• Friction. µ = 0.1 seemed to have good results.
• Initial and Final States. We set the initial state and final

state as described above. However, we do not control
for the α position of the flywheel. This would be too
unrealistic.

• Objective Function. No objective function is used, which
is why it takes long to reach the final state. This is shown
in Fig. 2. It takes nearly 15 seconds.

• Thresholds. Max torque of 1000. Max time of 15 sec.
Min time of 0.5 sec. Max contact force of 100.

2) Swing-Up Results: The computed trajectory values for
the problem specified above are shown in Fig. 2, 3, and 4.
The trajectory in these figures start on the ground and stand
on corner A. See http://ethanweber.me/cube.html for videos of
these trajectories on a simulated cube.

Upon analysis of Fig. 4, the contact forces look as expected.
Before moving, the cube is held above the ground by nearly
constant normal forces acting on vertical forces 0 and 3.
During the swing-up, corner B leaves the ground and force
3 goes to 0 magnitude. When this occurs, force 1 becomes
active and equates force 0 in the upright state. This shows that
the contact forces on corner A are perfectly balanced when at
the upright while all other corner forces are at 0 magnitude.

B. The Limit Cycle Problem

With success of the swing-up trajectory, we make slight
modifications to find the optimal limit cycle for moving
the cube horizontally by fixing the same corner (A) and
rotating θ a positive 90 degrees. This requires a similar torque
trajectory to the swing-up trajectory but now it must swing
all the way around onto the next cube face. To solve for
this problem, we did not put any restrictions on starting and
final velocities. Rather, they only had to equate each other.
Furthermore, the objective functions tested were to minimize
total torque, minimize time, or maximize speed. We found the
most interesting results by minimizing torque, which is shown
in Fig. 5.

The most interesting region of the torque is found in 10 to
15 sec. The force increases and then quickly brakes to make
the cube jump. As the cube approaches its next face contact, it
cranks down on the torque once again to brake it as it falls. A
video is shown at http://ethanweber.me/cube.html. The static
time until 10 seconds is rather strange, but it is likely due to
numerical errors and could be excluded from the limit cycle.
This would result in a velocity of about 1

5 unit/sec.

Fig. 2. Swing-up trajectory optimization states.

Fig. 3. Swing-up trajectory optimization torque input.

Fig. 4. Swing-up trajectory optimization ground forces.
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Fig. 5. This is the torque trajectory of the limit cycle with corner A fixed and
moving to the left with 90 degree turns. The cube starts flat on the ground at
the origin. Video available at http://ethanweber.me/cube.html.

IV. MPC STABILIZATION

This section explains the success of MPC for stabilizing
about the upright. We also show surprising swing-up results
with solely MPC and no trajectory optimization.

A. MPC about the Upright

With success of the swing-up trajectory, we stabilize the
upright with a proportional and derivative (PD) and quadratic
programming (QP) controller. This is referred to as our model
predictive control (MPC) in this paper. The optimization
was formulated by wrapping a PD controller around θ to
control for torque. The torque was computed by multiplying
a proportional gain by the error in θ and adding that to a
derivative gain times θ̇. The controller worked by solving at
each timestep, fixing the torque decision variable to the value
computed, and solving implicitly for the contact forces given
an objective function. The objective function minimized the
L2 norm between the current state and target state (excluding
θ and θ̇). Furthermore, the dynamics were linearized at each
timestep. We also added a quadratic cost to maintain the
original and desired corner (A) position. Results from starting
near the upright are shown in Fig. 6 and Fig. 7.

u = Kp(θ − θdesired) +Kdθ̇ (10)

Here are some values chosen for our particular controller.
• θdesired =

π
4.0

• Kp = 50
• Kd = 10
• −10 ≤ u ≤ 10

B. MPC for Swing-Up

Surprisingly, it was possible to use the same controller
to swing the cube up from the the ground. This was an
interesting result, especially considering how fast the swing-
up is. We hypothesis that the short swing-up time is because

Fig. 6. Torques from MPC starting near the upright.

Fig. 7. Contact forces from MPC starting near the upright.

the corner position is not strictly maintained. It’s much easier
for the cube to swing up when its corner can slide with
friction. Fig. 8 shows the torque and Fig. 9 shows the forces
found. It’s clear that the corner slides according to force 4
in the diagram. Furthermore, it takes less than two seconds
to complete the swing-up given our optimization constraints
and torque limits. Simulation video also reveals this at http:
//ethanweber.me/cube.html.

V. FINDINGS AND FUTURE WORK

In this section, we present general results, interesting find-
ings, and commonalities among the solutions presented. We
also use this section to discuss on-going work related to the
cube.

A. Experiments in Higher Dimensional State Space

As we were implementing optimization code with SNOPT
in Pydrake, we noticed that some problems would only solve
when we added a few extra free decision variables to the states.
These made no change to the dynamics, but this somehow
resulted in solution convergence. We found this strange and
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Fig. 8. This is the torque trajectory of the swing-up with MPC.

Fig. 9. These are the forces for the swing-up with MPC.

have begun writing code to compute the time to solution
(a solution success/failure) with respect to the number of
parameters involved. This effort is inspired by prior work and
ideas on this topic [5].

The way we noticed this issue was by originally modeling
the cube’s state space in 3 dimensions (in Drake’s simulation
environment). This meant that there were 14 states instead
of 8, but 6 of the states were free, meaning they did not
enter the dynamics. In other words, the cube was restricted
to stay in a 2d plane. After deciding to reimplement the state
space formulation in 8 states, we could no longer solve the
same swing-up problem. Analyzing the solution of the free
variables showed very small numbers being computed, but
nothing appeared meaningful. After tweaking the trajectory
optimization parameters, the solution would solve in 8 states.
This finding remains a topic that we hope to address more
rigorously in the future.

B. Initial Guesses

In this paper, no initial guesses were used in the optimiza-
tion problems. We struggled for a long time with how to

generate an initial guess given the contact-implicit dynamics.
However, we now have plans and ideas to proceed with. The
idea is to relax contact force constraints so they can act at
much greater distances. This may result in trajectories in which
the cube appears to float, but at least a solution will be created.
This solution can then as act as the seed (initial guess) to
SNOPT with a problem of tighter constraints. This idea is
informed by other work on this topic [1] [7]. We have high
hopes for its success due to the limitation of other initial guess
solutions and the large search space of forces.

C. Jumping and M-Block Work
Although we haven’t attempted much to make the cube

jump off the ground, it should be feasible due to the forward
integration dynamic constraints. This enforces that the ground
contact forces can only be active at time n if at time n+1 the
corner is in contact with the ground [1]. This means that if the
corner leaves the ground at time n + 1, then a contact force
cannot be applied to it a time n. Therefore, the energy that
would make the cube jump would be due to energy transfer
from braking the flywheel. However, although this is true,
we’ve had a hard time getting the cube to jump in an expected
way. It’s been much simpler to keep the cube on the ground
when creating trajectories, and we defer this problem to future
work.

Fig. 10. Here is an example for an M-Blocks inspired trajectory (start
and end state) we wish the achieve. This image is from the visualization
environment, meshcat (https://github.com/rdeits/meshcat-python/tree/master/
src/meshcat), that I’m using. Note that the extruded square represents the
flywheel in simulation. It would be impossible to view rotations of a uniformly
colored cylinder.

In the future, we hope to get jumping to work, and we also
hope to add more contact forces with other cubes. In order to
add more contact forces, we will have to replicate the force
vectors shown in Fig. 1 with new φ functions representing
the corner distances to contact objects. This will impose new
forces that can activate when in contact with other objects,
but this will come at a cost to the optimization. Each new
contact will introduce 8 decision variables per timestep to the
trajectory optimization method.

Furthermore, we hope to make more realistic models of the
M-Blocks. The braking mechanism can likely be modeled as
a separate actuator for quicker and more realistic flywheel
deceleration. Also, magnetic forces may not be modeled
correctly with contact-implicit dynamics [3].
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D. Proving Robustness

In the future, we hope to prove robustness of the trajectories
computed by trajectory optimization. Our current solutions are
guaranteed for point to point state space movements, but we
wish to generalize to regions of space to target points. We
also wish to show that a range of cube sizes, weights, friction
coefficients, etc. can work with the same trajectory and some
controller. We plan to create provably robust controllers that
can follow an optimal trajectory and simulate results on real
hardware (after success with an accurate simulator in Drake).

VI. CONCLUSION

With this work, we present success in modeling the
inertially-actuated cube in floating-base coordinates and using
contact-implicit trajectory optimization to control the cube. We
also show results with using MPC to solve a convex problem
that results in extremely fast control of the cube to the upright
position. Some key takeaways from the work done is that
slack thresholds in optimization are very important, relaxing
inequality state constraints to convex constraint (ex. adding
a quadratic corner position and height cost instead of strict
inequality position constraints) eliminates infeasible solutions
and has fast compute time, and tuning of paramaters is very
important. There is a lot of potential for the inertia cube, and
the methods presented in this paper are one possible means to
achieve good results. We plan to continue the work discussed
in this paper. Code is located at https://github.com/ethanweber/
cube and will continue to be updated as work progresses.
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