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Abstract—Masca is a low-cost, low-power sleep mask for Rapid
Eye Movement (REM) sleep detection outside of the laboratory.
Masca adapts to the human body, detecting eyelid motion using
a comfortable, affordable device for sleep staging and actuation.
Mental activity in REM sleep is crucial for long-term-potentiation
of learning and memory. Tracking and influencing of REM sleep
mentation opens up doors to augmentation of memory and learn-
ing: a future in which the content and consolidation of cognition
in sleep is rendered controllable by wearable electronics. We
show here that Masca offers reliable detection of head and eye
movement, offering a new sleep wearable for interfacing with
the REM dream state. In addition we report on using Masca to
detect and intervene in REM: We show that electrical muscle
stimulation during REM sleep can serve as a new modality for
interfacing with sleep and influencing dream content.

Index Terms—sleep, dream, interface, sensors

I. INTRODUCTION

A. What Sleep States are

We spend 50,000 hours dreaming during our lifetimes, yet
have no reliable way to capture or direct thought during
sleep [1]. Sleep stage detection is the first step to interfacing
with cognition in sleep, yet there exists no comfortable, con-
formable, low cost, low power Rapid Eye Movement (REM)
sleep detection wearables. This means the processes underly-
ing extraction of salience, the dreams mitigating post-traumatic
stress, and the long-lasting neuronal changes after novel learn-
ing lie outside of our control. Capture and direction of REM
sleep content, where dreams are most vivid, is a holy grail
for the augmentation of memory and learning: Dream activity
in REM, specifically, contributes to long-term-potentiation of
learning, memory, and traumas. Sleep neuroscience has shown
augmentation of each of these processes is possible in the
laboratory. Yet tracking of REM, and interfacing with tracked
dreams, has been extremely difficult to translate outside of
laboratory contexts.

REM is one of 4 main types of phasic sleep stages humans
pass through nightly. Rapid Eye Movement (REM) Sleep,
Light Non-Rapid Eye Movement (NREM) Sleep, Deep NREM
Sleep, and Sleep Onset cycle in 90 minute periods throughout
the night, each reliably separable by electroencephalogram
analysis. Throughout the night these cycles offer myriad

cognitive benefits [2]. Post-learning sleep has been shown
to improve memory performance, insight generation, motor
skills, and much more: The building blocks of learning and
creativity are formed in the furnace of sleep [3].

Our nightly descent into sleep creates brain-states demon-
strably tailored for the rehearsal and consolidation of learning
and memory, yet specific sleep stages have distinct benefits
and thus offer distinct opportunities for cognitive enhance-
ments. Audio cues which are tied to an aversive stimulus and
presented during REM sleep, called targeted memory reac-
tivation (TMR), enhance performance on previously learned
skills, whereas cueing during NREM sleep impairs them [4].
For traumatic situations where forgetting is optimal, auditory
cueing of conditioned fear stimuli during NREM but not
REM show selective impairments of fear memory purple2017.
Protocols like TMR illustrate the importance of specific sleep
staging for the directed enhancement or impairment of mem-
ory consolidation.

B. Why we care about Dream Content

The occurrence of NREM or REM sleep alone are not
the whole picture: Recent converging evidence points to the
influential role of sleep thought content, namely dreams,
mediating beneficial outcomes of each sleep stage [5]. Dream
content often plainly reflects recently encoded memory, with
novel learning experiences being a particularly strong driver
of dream content, suggesting a role of dreaming in learning
new information [5].

Recent research suggests a central role of dream content in
post-sleep cognitive outcomes. Fiss et. al (1977) show that
after reading a short story, participants who report dreams
related to the story exhibit superior recall for the text the
following morning [6]. Wamsley et. al (2010) show that
improved performance on a virtual navigation task is strongly
associated with occurrence of task-related dream imagery
during an intervening afternoon nap, yet task-related thoughts
during wakefulness do not similarly improve performance.
This driving role of dream content has been found for creative
insight generation as well as spatial navigation and memory
consolidation [7]. REM dream content has even been shown to



predict remission from Depression and PTSD after traumatic
events [8].

Multiple studies have shown that manipulation of dream
content is feasible, though not entirely reliable or predictable,
through manipulation of sleep environment, pre-sleep, and in-
sleep exposure or delivery of smell, audio or somatosensory
stimulation [9]. If an uncomplicated and effective sleep in-
terface for detection and influence of dreams can be devised,
the cognitive causal role of this sleep mentation can be taken
advantage of [1].

C. Why REM, and how sleep researchers detect it with PSG

With the goal of interfacing with sleep mentation it makes
particular sense to focus on REM sleep, as it has been
classically regarded as the source of apex dreams, those
which are most vivid and can be most reliably recalled [?].
Primarily, any REM sleep interface must be an effective REM
detector. Classically, the detection of sleep stages has been
done via polysomnography (PSG), a combination of activity
sensors including brain (EEG), eye (EOG), muscle (EMG),
heart (ECG), breath and pulse oximetry. Yet PSG is rife
with problems: The amalgam of sensors creates a device
which is cumbersome and prohibitively expensive [?]. And
even with so many concurrent sensors the detection of sleep
stages remains more of an art than a science, as signals often
disagree–REM sleep related changes in heart-rate variability
from predominantly parasympathetic to sympathetic states, for
instance, can occur up to 15 minutes prior to the EEG-defined
onset of REM sleep [10].

Fig. 1. Polysomnography, a common type of sleep study. Polysomnography
is expensive and requires a plethora of sensors resulting in an uncomfortable
sleeping condition.

When sleep scoring clinicians must use personal judgment
to determine sleep states in the face of such contradictions,
unreliability is introduced, and yet automatic sleep scoring
of PSG has proved extremely difficult [11]. Further, PSG
creates an uncomfortable sleeping situation because it is teth-
ered to the laboratory setting and requires extensive adhesion
of sensors to the body. This causes demonstrably different
sleep than that experienced at home and causes confounding
incorporation of thoughts and feelings about sleeping under
surveillance into dream content [12] [13].

D. Why NightCap (Success, clinically relevant signal, accu-
racy, first night effect, but changes sleep)

To overcome the intense labor and capital costs of PSG,
as well as bring sleep neuroscience beyond the disruptive in-
fluence of laboratory observation, an inexpensive home-based
sleep monitoring system is necessary. Two main strategies
have been attempted in the past, namely building portable
PSGs or devices which track solely body movement. The first
has proved far too expensive, and the second far too unreliable
[14]. In the 1990s, Harvard Medical School pioneered the
development of a device which mitigated both difficulties,
called the Nightcap [14]. This headworn device uses eye move-
ment and head movement data gathered from custom, adhesive
piezoelectric sensors stuck to the eyelid of each subject and a
multipolar mercury switch worn on the head. Taken together
these signals can be used to distinguish wake, NREM and
REM sleep. These signals are sensitive to the varied types
of muscular atonia and unique eye movement frequencies
exhibited in specific sleep stages. Binary classification (yes/no)
detection of body and eye movement were fed into a Nightcap
state machine for sleep, automatically classifying sleep stage
based on sensor thresholds each minute.

Nightcap-derived values for sleep latency, REM latency,
wake time, NREM time, and REM time calculated showed no
significant differences from those derived from polysomnogra-
phy ajilore1995. The Nightcap identified sleep states correctly
in 87% of 1-min epochs as compared to PSG, coming quite
close to the 95% interrater reliability seen with PSG analysis.
Further, the Nightcap reduced per-night cost of sleep monitor-
ing by 10x, as it can be used without any supervising personnel
and requires fewer disposable sensors than PSG.

The Nightcap offered a simpler, cheaper sleep staging
tool and opened up opportunities for mobile sleep science
and longitudinal diagnosis of sleep-related symptomatology at
home. It demonstrated sensitivity to clinically relevant changes
in sleep quality, enabling diagnosis outside of the laboratory
with increased ecological validity. Yet it remained limited in
many ways: The device remained wired and required a bulky
amplification circuit, neither of which is ideal for sleeping
settings. The wearable was mounted on the forehead, an
unnatural location for sleepworn devices, making uptake with
high compliance at scale difficult. Crucially, the device relied
on custom, disposable, adhesive piezoelectric sensors which
were stuck to the eyelid of each subject and thresholded for
binary classification of eye movements. Though the Nightcap
was a leap forward for sleep science in its time, the cost
and comfort of such sensors was a major limiting factor in
the uptake of such devices inside and outside the research
laboratory.

E. Our device (First night effect, conformable, cheap)

Our device, Masca, takes on these device design challenges
to modernize the Nightcap and push beyond the limitations of
forehead worn, wired, disposable sensing. Harvard Professor
Robert Stickgold, a leader on the original Nightcap work, has



Fig. 2. A Nightcap system being worn.

been kind enough to lend us original Nightcap devices, and
advise us as we build a newer version.

Fig. 3. Masca final prototype.

We use piezoresistive fabric sensors to detect eye movement,
which offer increased sensitivity and conformability over the
original Nightcap sensors. We make use of this increased
sensitivity to detect eye movements without adhesion to the
eyelid, improving comfort and ease of use. As these sensors
are robust and do not require adhesion, we improve the device
from a disposable to a reusable sensor design. We embed these
in a silicone eye mask, a form factor which both improves
sleep comfort for many and offers a natural material interaction
with the eyelid. We place our amplifiers onto a custom built,
miniaturized printed circuit board (PCB) which fits onto the
eye mask, eliminating the need for a bulky electrical box. We
add an inertial measurement unit (IMU) onto the PCB design,
such that a forehead worn device is not needed to detect head
movement. We also offer a software setup to detect body
movement via a standard laptop webcam, as loss of muscle
tone in REM sleep reduces movement output, if researchers
desire data on whole body movement. We transmit data on
eye, body and head movement wirelessly, using Bluetooth
Low Energy communication from the Masca PCB, eliminating
the need for wires in bed. We hope these improvements in
comfort, conformability, reusability, communication, and cost
make Masca a reliable sleep tracker and interface that everyone
can use.

F. EMS + Control as first use case

As a pilot use case for Masca, we aim to demonstrate
initial feasibility of dream influencing via a new sensory
stimulation modality, transcutaneous electrical muscle stim-
ulation. We propose a revamping of Nielsen et. al (1993),

in which somatosensory stimulation of the legs via leg-worn
pressure cuffs showed demonstrable limb-specific changes in
kinesthetic dream content [9]. Visual-kinesthetic synesthesia,
direct incorporation of pressure and squeezing sensations, and
increased bodily bizarreness in dreams were each observed
nielsen1993. Earlier research had demonstrated a tie between
muscular activity and mentation during sleep–EMG activity
in the zygomaticus, the smiling muscle, had been shown to
be correlated with both positive dreamed affect and dreamed
communication–but Nielsens work was pioneering in its use of
this tie as an instigator, rather than correlate, of dream content
[?]. Professor Nielsen has been kind enough to offer advice
on our current experimental design.

We propose use of transcutaneous electrical muscle stimu-
lation (EMS) in place of pressure cuffs, as EMS offers more
flexibility in terms of body placement and more specificity in
terms of sensations generated. Further, EMS during sleep has
already been shown to be a valid, feasible method for decades
to effectively relieve sleep apnea symptoms [15]. Lastly, EMS
opens up doors to fascinating new research questions on dream
incorporation, as there is fMRI evidence to suggest electrically
stimulated muscle movements are interpreted as self-generated
rather than exogenous, possibly making this methodology
markedly different than classical dream stimulation via audio
or scent [16].

The controlled incorporation of outer stimulus into dreams
has been a primary challenge for dream direction, as relay
of much sensorimotor information from the the thalamus to
cerebral cortex is cut off in sleep by thalamo-cortical sensory
gating [17]. Research on gating mechanisms for ones own
muscle movement during sleep is sparse. Thus direct EMS
in REM, if proven effective, offers both insight into a new
research question about the extent of thalamic gating of motor
movement and a new modality for dream direction in the REM
state.

G. Mission: Make sleep science relevant again

The crucial role of sleep in healthy consolidation and
integration of learning, memory and emotion in the human
brain has been established clearly by sleep neuroscience [18].
Furthermore, researchers in the laboratory have demonstrated
the ability to restore and augment these processes, whether
through targeted memory reactivation, dream direction, or
audio entertainment. The main limitation factors on the de-
mocratization of this science and the spread of these beneficial
protocols is the cost and accessibility of sleep laboratory
equipment. The Nightcap made great strides towards this
goal, yet was limited by available sensor technology. Masca
hopes to build on this work, offering a form factor with
contemporary sensing and communication technology built for
cheap, comfortable sleep interfacing in the laboratory and the
home.



II. METHODS

A. Sensor Design and Fabrication

Here we explain the design and fabrication of Masca, our
low-cost, comfortable wearable designed for REM sleep stage
detection. We developed two types of soft sensors designed for
detecting eye movements. The design criteria were: (i) ease of
fabrication for fast-prototyping and large manufacturing, (ii)
deformability and conformability to the skin for maximum
comfort, and (iii) high sensitivity to detect strain or pressure
due to eye movements during REM.

1) Triboelectric sensor: The first attempt at fabricating a
sensor for the sleep mask operates based on the triboelectric
effect. Triboelectric nanogenerators (TENG) are a class of
devices that can produce electricity from mechanical energy
through a combination of electrostatic induction and contact
electrification due to friction between different materials.
During its regular contact, as the TENG is compressed and
separated to and from the skin, electrons travel from the
skin to the silicone rubber surface and vice versa [19]. The
induction of charges results in a successive flow of positive
and negative currents and voltages. This principle allows us to
harvest energy from biomechanical motions through TENG.
We designed a self-powered sleep mask to gather energy from
eye movements and detect them simultaneously.

To fabricate the triboelectric sensor, we first 3D-printed
a custom injection mold with the Formlabs Form 2 printer.
The mold or scaffold consists of two detachable parts that
together make a 2 mm diameter cylinder. A conductive thread
was positioned on the center of the cylinder while fast-
cure silicone (Ecoflex 00-35) was injected. After curing, the
two-part scaffold is dismantled to reveal a conductive thread
encapsulated with a silicone layer. We tested this TENG-thread
device by connecting it to a load with high-value resistance
(1 MOhm) in order to observe the voltage generated on the
load. The TENG-thread device can successfully detect the
presence of touch and pressure of the finger. However, the
current prototype is too bulky and uncomfortable to be worn
as a sleep mask. A miniaturization effort needs to be further
conducted through precision engineering and fabrication in
order to develop a smaller-scale TENG device that not only is
comfortable and seamless, but also has a high sensitivity for
REM detection [20].

Fig. 4. Fabrication process of triboelectric nanogenerator thread.

2) Piezoresistive sensor: For the fabrication of our final
sensor, we then prioritized a second approach, which explores
the piezoresistive effect of smart fabric coated with conductive
materials for pressure sensing. The pressure-sensing element
is a 5x5 mm multi-layer structure made out of piezoresistive
fabric in between two conductive fabrics. The piezoresistive
fabric is a knit fabric coated with PPy, a conductive polymer
in concentration that gives surface resistivity of 20 KOhm/sq.
Since it is piezoresistive, the resistance of this fabric sensor
changes in correlation to the applied force [21]. Similar to how
an FSR works, a higher pressure compresses the conducting
molecules coated onto the fabric. These molecules then form
a network with each other, allowing more current to flow and
reducing the resistance around the area in contact. Therefore,
the larger the force area and the stronger the force are, since
these networks can be approximated in parallel with each
other, the lower its total resistance. We observed that smaller
active area gives higher sensitivity for detecting lower pressure
from eye movements due to its smaller contact area.

Fig. 5. Piezoresistive fabric pressure sensor with its interconnects.

3) Mask design: Next, we integrated the two textile-based
soft pressure sensors for both eyes with conductive threads
or flexible stranded wires. After that, they were attached to a
3D-printed, customized mold designed for a sleep mask. The
design involves a bump structure that goes towards the eye
to ensure that the soft pressure sensors conformably presses
against the eyelids to sensitively detect eye motions. Silicone
(Ecoflex 00-35) was chosen as the material for casting for its
fast curing time and high conformability. The soft pressure
sensors embedded in a silicone bath were then cured, peeled
off, and connected to the hardware system for sensor read-out
and wireless transmission.

Fig. 6. 3D-printed sleep mask mold for casting silicone.



B. Hardware

1) System design and fabrication: We designed a double-
sided PCB (Printed Circuit Board) using Autodesk Eagle,
which was fabricated in-house using a Modela MDX-20 3-
axis CNC machine. The board was shaped using a 1/32 end
mill for holes and edges, 1/64 for the roughing pass, and the
1/100 for the finishing pass. To handle logic and networking
we used an RFDuino (RFD22301) module, a Nordic nRF51
microcontroller with integrated Bluetooth based on the ARM
Cortex-M0 core. This microcontroller has 128kb of Flash and
8kb of RAM. The typical supply voltage is 3V.

Fig. 7. Final PCB front and back view.

To sense head movement, we used a 6-axis Inertial Measure-
ment Unit (IMU) MPU6050 that combines a 3-axis microma-
chined microelectromechanical systems (MEMS) accelerome-
ter, 3-axis MEMS gyroscope, and a Digital Motion Processor
(DMP). We interfaced with the IMU through the I2C bus.

2) Piezoresistive sensor interfacing: In order to sensitively
detect the lower range of force exerted by the eyelids during
REM and eliminate intrinsic noise, we designed our own filter
and amplifier circuit. As shown in Figure 8, the soft pressure
sensor hardware interface consists of four stages: potential
divider, buffer, low-pass filter (LPF), and non-inverting ampli-
fier stage. We used a double operational amplifier (TLV2374)
because of its single supply and rail-to-rail input and output
features. The two piezoresistive fabric sensors had different
electrical properties as they were not identical, so we had to
use different resistor values to achieve an adequately calibrated
baseline and amplification.

Fig. 8. Piezoresistive sensor interface circuit.

Potential divider: The first stage of the sensor interface
hardware is the potential divider circuit. This circuit is built
to transform a change in resistance given by the soft pressure
sensor to a change in voltage (Equation 1). The reference
resistor is chosen to be significantly lower than the offset
to bring the close to the zero level. This ensures that the
voltage baseline is low and that signal amplification would
not dramatically reach the voltage rail limit. As REM occurs,
the low pressure exerted from the eye movements reduces the
resistance of Rsensor and results in the small increase of Vpot.

Vpot = Vcc
Rref

Rref +Rsensor
(1)

Buffer and low-pass filter: The buffer or voltage follower
circuit acts as a separator between the low-pass filter and
potential divider. It copies the voltage from the non-inverting
input to the output (Equation 2). This minimizes the loading
effects from the potential divider that could influence the
response of the LPF by providing a low source impedance. The
passive LPF consists of Rf and Cf elements with low cut-off
frequency of 5 Hz (Equation 3). The filter eliminates various
noise sources; for example, from AC main hum, environments,
to high-frequency vibrations and passes through DC signal,
which is the frequency of operation (Equation 4).

Vbuf = Vpot(2)

fc =
1

2πRfCf
(3)

Vlpf = Vbuf
1√

1 + (ωRfCf )2
(4)

Amplifier: Finally, to enable the detection of low-pressure
signals, a non-inverting amplifier is also designed in the circuit.
We chose the non-inverting configuration to easily tune the
gain of the amplifier and avoid the use of negative supply.
As shown in Equation 5 below, by experimenting with R1
and R2 values, we can tune the voltage output given by the
sensor based on the pressure sensitivity and maximum rail
output. We designed an amplifier circuit with a gain of around
50 to amplify mV range of input signal to a maximum of
3.3 V output The amplification is fulfilled before the signal
is fed to the Analog-to-Digital Converter (ADC) input of a
microprocessor for digitization and further processing.

VADC = Vlpf (1 +
R2

R1
)(5)

3) Power analysis: For powering the board we use a 3.7V
350mA LiPo battery. To provide a constant voltage of 3.3V for
the microcontroller and piezoresistive eye movement sensors,
we used a 150mA Low-Noise LDO (Low-Dropout) Regulator
(MIC5205). The RFduino draws a maximum of 15mA, and
the accelerometer and gyroscope operate at a current of 0.5mA
and 3.6mA respectively. The estimated total current draw is
19.1mA, enabling our device to run for for 18.3 hours with the
aforementioned battery capacity. A LiPo charge management



controller (MCP73831) is used to recharge the battery by
powering the board with a USB micro. A red and green LED
are used to indicate the charging and done state.

4) System programming: To save space on the PCB, we
used a Tag-Connect No Legs 6-pin Cable fitted with a 6-pin
0.1 pitch ribbon connector. The spring loaded connector pins
combined with the three alignment pins provide a reliable
temporary connection to the board utilizing a very small
footprint (3.1 x 6.2 mm) on the board. To program the board,
we used the RFduino USB shield (RFD22121).

C. Software

Fig. 9. Masca software architecture.

1) Embedded: In order to detect the subtle eye vibrations
during REM, we are relying on the variations in mechanical
pressure the eyelids apply to the sensor on the eye mask. The
pressure variations produce a change in the resistance that we
use to detect when the eyes are moving.

The software system is composed of 3 submodules: embed-
ded, server, and client. For the embedded software, in an early
prototype, to validate the ability to detect eye movements, we
used a textile sleep mask with the custom flexible piezore-
sistive sensors we designed sewn with conductive thread. To
detect the eye movement, we connected the eyelid sensors to
a voltage divider circuit and used an Arduino Uno microcon-
troller to read the output values. Next, we conducted several
pilots to test data collection.

For the final version of Masca, the embedded software is
written in Arduino language, which is basically a set of C/C++
functions. For sensing eye movements, the Analog to Digital
Conversion (ADC) is used to measure the amplified signal of
the piezoresistive sensors. To ensure an accurate ADC reading,
an analogRead is performed to set the MUX to a particular
eye pins ADC channel but the result is discarded as it can
sometimes be garbage when switching between channels. A
delay of 1 millisecond is used to ensure that the appropriate
registers are set, and then the actual analogRead is used
to read the voltage fluctuations caused by pressure on the
piezoresistive sensor.

Example:

edaReading = analogRead(edaPin);
delay(1);
edaReading = analogRead(edaPin);

(1)

To filter the signal, an alpha-beta low-pass filter was imple-
mented to smooth the data. Using trial and error, we converged
to an alpha value of 0.85.

value = value + α ( input - value)

We read the new signal values, filter them, and send them
to the server via BLE (Bluetooth Low Energy). There is a
delay of 8 milliseconds at the end of each loop, summing up
to 10ms when adding the two 1 millisecond delays performed
when reading the piezoresistive sensor values from the ADC.
This enables a transmission frequency of 100Hz, significantly
faster than eye movements during REM (10Hz) [22].

For the final design we could not communicate with the
IMU due to a hardware communication problem. To overcome
this, we implemented movement detection using a webcam and
OpenCV. To support the idea that larger fluctuations in the
signal represent REM, we cross-validated the experiment with
video analysis of body movement during sleep. We recorded
still images of a sleeping subject every 10 seconds using a
webcam triggered by a custom Python script during a sleep
trial and compared frames to get a measure of movement.
Next, the images were processed by computing the sum over
each pixel-wise differences in the grayscale images collected
using Numpy in Python. This computed the L1 norm between
sequential images. This leads to spikes in magnitude during
sleep. Figure 10 shows a graph depicting these image differ-
ence values over time with the eye sensor readings over time.

Fig. 10. Body and eye movements in one night are plotted here. Consecutive
images from a standard USB webcam were compared to obtain body move-
ment magnitudes. The left and right sensor readings are 10-bit analog values
reported by the piezoresistive sensors (at 10 HZ) embedded in the sleep mask.
The large spike around 3.5 hours corresponds to a brief disruption of sleep.

2) Server: The back-end is written using Node.js (), a
cross-platform JavaScript run-time environment that executes
JavaScript code server-side. To receive the data sent from the
embedded system, Noble () is used, a Node.js BLE (Bluetooth
Low Energy) central module.

In order to detect the subtle eye vibrations during REM,
we are relying on the variations in mechanical pressure the

https://nodejs.org/en/
https://github.com/noble/noble


eyelids apply to the sensor on the eye mask. The pressure
variations produce a change in the resistance that we use to
detect when the eyes are moving. To detect eye movements, a
double threshold filter and a refractory period of inactivation
is employed. The lower threshold filters out signal noise,
identifying significant pressure changes that could indicate eye
movements. The upper threshold filters out major pressure
changes caused by eyelid movements and other unwanted
artifacts. If the resistance change is within this range, the value
is classified as an eye movement. Given that there are can be
around 3 of eye movements per second, a refractory period
of inactivation of 300 milliseconds is implemented to reject
false positives such as double activations. The number of eye
movements per minute is also calculated.

The server communicates with the client using socket.IO
(), a real-time bidirectional event-based communication frame-
work. This enables the server to listen for user input events
such as toggling logging and performing reset. Activating
logging timestamps and logs piezoresistive eye sensor values,
classified eye movements, and number of eye movements per
minute. Regardless of whether logging is activated or not, the
three aforementioned values are sent to the client side for the
user to visualize. The server also listens for the reset user event
to zero all the counters, a function useful when calibrating and
testing.

Fig. 11. The sleep stage FSM used for Stickgold’s Nightcap.

3) FSM rebuild: In Stickgolds Sleep State Machine, de-
tailed above (Figure 11), each minute during the sleep cycle
is classified as a body minute, eye minute, or null minute and
sleep stages are automatically classified based on movements
per minute. We implemented this setup as a Python program
() with signal processing based on our sensor thresholds.
Although we didn’t have enough experimental data to test
all its functionality, the Python FSM is implemented in code
and runs. This Python program was used to collect all of the
data shown in Figure 11. The FSM has been further tested on
heavily synthetic data, but more testing is necessary and more
details are available at the GitHub repo.

In future work we plan to integrate this FSM into the soft-

ware back-end and BLE data transmissions discussed earlier,
allowing for wireless sleep stage classification on a per minute
basis. With the advances in machine learning, we expect we
will achieve superior accuracy compared to the Nightcap.

4) Graphical User Interface (Client): The user interface
(UI) is a web application written in JavaScript, leveraging
jQuery for interacting with the DOM, and client-side socket.IO
to communicate back and forth with the server. The client lis-
tens for the streaming of the two piezoresistive eye movement
sensor values and plots the data in real-time using D3.js ().
Every time the server detects an eye movement, a socket event
is emitted and a the UI displays the result. The client also
receives the number of eye movements per second and displays
it to aid the experimenter in judging whether the participant is
in REM or NREM. The UI allows for input fields to specify the
user, group, gender and age, information which is logged into
a CSV file when logging is started. There are two buttons for
the experimenter to interact with the system, one for toggling
logging on and off, and one for resetting all the eye movement
counters. Clicking these buttons emit socket events for the
server to listen and perform the appropriate action. Jade is
used as the template engine instead of raw HTML.

Fig. 12. Demonstration of Masca real-time UI.

D. Pilot experimental methods

At the beginning of the study, all subjects (n=3) were given
a consent form to sign. Subjects lay down on a couch within
a sound-dampened room. Afterwards, the devices used in
the study were explained to them: a comfortable sleep mask
which uses conductive and piezoresistive fabrics to detect eye
movements, and an FDA approved electrical muscle stimulator
device for pain relief via muscle actuation with a maximum
voltage and current of 70 V and 0.72 mA respectively. Par-
ticipants were outfitted with both devices to test comfort, and
each underwent a muscle actuation demonstration to ensure
no discomfort. Stimulation site was the lower leg, with EMS
pads placed 3 inches apart on the upper and lower Gastroncne-
mius calf muscle. Participants confirmed experience of muscle
contraction. Participants were then instructed to fall asleep.

Our experimental design built off of Nielsen (1995). On
stimulation trials, the EMS was actuated according to the
following schedule: after at least 5 minutes of REM sleep
in the first REM period, and 5 minutes in the second REM
period. REM was defined as minutes in which eye movements
exceeded 10 eye movements per minute [22]. After each

https://socket.io
https://github.com/ethanweber/sleep_stage_detection
https://d3js.org


Fig. 13. A subject wearing Masca during sleep.

stimulation trial, participants were asked to 1) lie quietly for
30 seconds and remember the preceding dream, 2) report
the entire dream, 3) report any apparent body experiences
or awareness of the EMS during the dream 4) describe their
level of comfort with the system. After the first stimulation
trial, participants were asked to fall back asleep after issuing
a dream report. After the second, they were fully awakened.

Fig. 14. EMS electrodes attached on a subject’s leg.

On control trials, EMS was initiated during NREM rather
than REM, but participants were awakened according to the
same schedule for the experimental conditions and asked
the same questions. Each subject underwent only one round
of sleep, whether they were in the experimental or control
group. After each subject was finished, the eye mask and
stimulation pads were cleaned with isopropryl alcohol. The
experimental procedure has been reviewed and validated by
MITs Committee on the Use of Humans as Experimental
Subjects (COUHES).

E. Dream report rating methods

All questions were adapted from Nielsen (1995). The order
of NREM vs REM trial dream reports was independently rated
by two condition blind judges. The following rating categories
were used:

Did the participant report a dream? If no, end Rating. If
yes, continue:

1) EMS Pads. Does the participant refer to the EMS pads
(or similar object) as being on the leg? (y/n) Which leg?
(right/left/both/neither)

2) Leg Sensation. Apart from references to pads, does the
participant refer to any discrete sensations in/of the foot
or leg? (y/n) Which foot or leg? (right/left/both/neither)

3) Leg Activity. Apart from references to the pads, how
intense is activity of the feet or legs? (1 = not at all 4
= moderate, 7 = extreme)

4) Reality Quality. Does the participant say that any part of
the dream seemed real or as if they were awake? (y/n)

5) Gravity Themes. Does the participant refer to a height-
ened or unusual sense of gravity (e.g., heaviness, float-
ing, flying, spinning, etc.)? (y/n)

6) Gravity Themes. Does the participant refer to a height-
ened or unusual sense of gravity (e.g., heaviness, float-
ing, flying, spinning, etc.)? (y/n) .

7) Bodily Bizarreness. Overall, how unusual or bizarre is
the bodily involvement in this dream? (1 = not at all, 4
= moderate, 7 = extreme)

8) Laboratory Incorporation. Does the participant refer to
any parts of the sleep laboratory or its equipment,
the experimenter or technicians, or the experimental
procedures? (y/n)

F. Results

G. Dream recall and incorporation

Two condition blind raters compared transcriptions of dream
reports gathered from trials of stimulation in REM (Subject 1)
and NREM (Subject 2). Both raters noted that Subject 2 failed
to recall a dream on 2 separate wakeups following stimulation
in NREM (QA). Both raters confirmed 0 references to legs
or leg sensation (Q2), 0 reality quality (Q4), and 0 bodily
bizarreness (Q7) in NREM.

Both raters noted that Subject 1 successfully recalled a
dream on 2 separate wakeups following stimulation in REM
(QA). Both raters confirmed references to legs or leg sensation
(Q2) in both dreams (mean intensity 1/7 for Dream 1 SD
0, mean intensity 6.5/7 SD +/-.5) on dream 2). Both raters
confirmed reality quality in both dreams (Q4). Raters disagreed
on rating of bodily bizarreness on Dream 2, with a mean rating
of 4/7 and SD +/- 3, and as such this question was discarded
from analyses (Q7). Subject 3 failed to fall asleep, and as such
was excluded from analysis.

H. Subjective report

All subjects reported minor discomfort with the pressure of
the eyemask. Quotes on the subjective dream experience from
Subject 1 (REM stimulation) follow:

Was like a beach...just looking at them, the rocks...I can see
my feet...I had a small image of running in a field. And then
feeling the grass hit on my feet.

I didn’t get any dreams until I started feeling the device.
Yeah it was cool, at some point you can anticipate the increase
of the, you know, da-da-da-da-da-da (*the shock*) and then
once it started to get stronger you kind of will be waiting for
like boom this is the peak and then at the peak you get an
image. I enjoyed that stimulation you know. That felt internal.
So, it’s internal because it made me compile a sound but not
hear a sound. When I was explaining to you guys about the
pattern and how it’s evolving I made a sound. Kind of. Imagine



Fig. 15. Subjective report results.

a sound turns into something. That something is what that
(stimulation) turns into.

III. DISCUSSION

Most importantly, results support our hypothesis of EMS
stimulation incorporation into REM sleep dreams, with clear
focus on the stimulated leg in dream plot and dream sensation.
This result is novel, as EMS has not previously been used, to
our knowledge, for dream direction. These results are in line
with past literature showing exogenous somatosensory stimuli
from pressure cuffs can be amplified and elaborated into
apparent sensory determinants of dream content [9]. Subjective
report offers support of earlier research suggesting EMS
stimuli are interpreted as self-generated rather than exogenous
[16]. Moreover, results illustrate how such determinants are
frequently associated with an especially vivid reality quality
during the dream [9]. Results are also in line with previous
work demonstrating reduced dream recall in NREM vs REM
sleep, lending credence to our REM tracking form factor [23].
Observed lower intensity incorporation into REM period 1 vs
2 is in line with literature demonstrating increasing intensity of
dreams in deeper REM cycles, perhaps explaining why Nielsen
(1993) did not perform wakeups after REM period 1 [23].

IV. FUTURE DEVICE DESIGN WORK

In the future, we would like to outsource the PCB through
an industrial manufacturer, making it much easier to attain
a clean connection and overcome the problems given by the
CNC machine and soldering of miniaturized components (such
as IMU6050). To improve the power efficiency and operation
lifetime of our hardware, a buck-boost converter with battery
level detection will also be integrated into the system. We
also plan to improve the reliability and reproducibility of the
soft piezoresistive pressure sensors, by laser cutting the fabric
elements and incorporating a very thin mesh layer to normalize
their resistance baseline.

In future work, we are also interested in detecting not only
eye motion, but also the motion’s direction. This can be done

by incorporating multiple soft pressure sensors around the
eye region and other sensing modalities, such as EOG, into
a single comfortable smart sleep mask. In order to further
improve the weight and comfortability of this mask, we plan
to fabricate a flexible form-factor of the current PCB that can
be embedded in silicone simultaneously with the soft pressure
sensors. Finally, due to the straightforward fabrication process
and materials used in this project, we plan to fabricate and
distribute the REM sleep mask on a large-scale. Incorporated
with our OpenSleep platform, this would further support the
accessibility of our technology and enable the collection of
’big data’ of sleep stage sensing and the profound impact of
dream content manipulation to a large audience.

V. FUTURE EXPERIMENTAL METHODS

In future experiments, after initial validation of the tracking
efficacy and comfort of Masca in pilot testing, we will do a
separate control comparison with a larger subject n. Experi-
mental trials using Gastronemicus EMS stimulation in REM
will be compared to control trials of no (sham) stimulation
in REM with wakeups in REM following Nielsen (1993).
Our pilot methods served primarily to validate REM vs.
NREM detection and introduce the possibility of using EMS
to influence REM content. Future experiments make use of
this validated tracking and serve to elucidate whether this
REM influencing capability stems from stimulation or simply
device placement on a limb. The order of sham vs. stimulation
trial dream reports will be scrambled and independently rated
by two condition blind judges to compare sham vs. EMS
stimulation dream reports with the same rating method used
in pilot testing. The experimental procedure has also been
reviewed and validated by MITs Committee on the Use of
Humans as Experimental Subjects (COUHES).

VI. CONCLUSIONS

Fig. 16. Full prototype of Masca integrated with PCB.

Our aim with Masca is twofold: to offer a new form factor
for REM detection, and to demonstrate a pilot use of this
interface for a new form of dream direction using EMS. Our
results offer initial evidence that dream content is influenced
in identifiable ways by electrical muscle stimulation of the
limbs, using a more compact and affordable system for REM
detection than has existed in the past. Developing a compact
REM detection and intervention device can enable a full range
of applications to interface with our dreams, translating sleep



neuroscience outside of the laboratory: Memory augmentation,
motor learning amplification, traumatic nightmare reduction,
lucid dream provocation, dream recall increase, dream theme
inception, and more nuanced quantified self for sleep are all
within reach with such a device. Masca brings us one step
closer to a future in which unconscious cognition in sleep
is rendered controllable via conformable electronics, allowing
at-home sleep sensing and actuation of dream content.
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